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Abstract

We consider the problem of learning rules from a
data set that support a proof of a given query, un-
der Valiant’s PAC-Semantics. We show how any
backward proof search algorithm that is sufficiently
oblivious to the contents of its knowledge base can
be modified to learn such rules while it searches for
a proof using those rules. We note that this gives
such algorithms for standard logics such as chain-
ing and resolution.

1 Introduction
Machine learning, coupled with plentiful data, promises an
approach to the problem of constructing the large knowledge
bases needed for AI. Whereas traditional knowledge engi-
neering by hand, as exemplified by the CYC project [Lenat,
1995], proved difficult to scale, machine learning holds the
promise of producing a large and consistently interpreted
knowledge base. Of course, any kind of inductive learning
faces the danger of incorrect generalization, and thus such
knowledge must use a semantics that is weaker than classical
logic. Valiant [2000] proposed PAC-Semantics as a semantics
for classical logics that is liberal enough to tolerate the imper-
fect rules produced by models of machine learning [Valiant,
1984]. Subsequently, Valiant [2006] also demonstrated that a
large knowledge base can be soundly learned from a reason-
able size data set. Michael and Valiant [2008] demonstrated
the use of such knowledge bases on a sentence completion
task, and a system using this approach [Isaak and Michael,
2016] was tied for top performance in the first Winograd
Schema Challenge competition [Davis et al., 2017].

Although Valiant [2006] showed that there is no statistical
barrier to learning a large knowledge base, computational is-
sues from representing and accessing such a large knowledge
base may still arise. One way of avoiding these issues was
proposed by Juba [2013], building on Khardon and Roth’s
learning to reason approach [Khardon and Roth, 1997]: in-
stead of representing a knowledge base explicitly, Juba de-
cides a query using the data directly, and guarantees that the
result is sufficient to distinguish queries that have low valid-
ity from queries with small proofs using knowledge that could
have been learned from the data. Thus, the query is answered

using a knowledge base that is only implicitly learned. Cru-
cially, this approach applies to settings where some attributes
are not observed in the examples used for learning, and there-
fore some reasoning may be required. These attributes may
still be mentioned in the background knowledge and query.
For example, we may observe medical test results, but not
whether a given patient actually has a given disease.

A drawback of Juba’s approach, however, is that it provides
no explicit representation of what knowledge could have been
learned to support the query. It only provides a set of proofs
for specific examples from the data set. This may not be ad-
equately interpretable for human oversight of the system; if
possible, we would like to inspect the knowledge that is being
used to provide answers to our queries. Moreover, there are
applications for which we are more interested in what knowl-
edge could have been used to derive the conclusion than we
are in the conclusion itself. For example, such algorithms
might be applied to learn a screening rule for fraud detection
as follows: Given a definition of behavior that is legitimate
and a set of example transaction histories that are known to
be legitimate, we could seek to learn what properties (if any)
of the observed portions of these transactions can be used to
guarantee that they are legitimate by using the definition of
legitimate behavior as our query. We can then check whether
or not these learned properties are observed to hold on future
transactions to decide whether or not they warrant further in-
spection. Note that in this case the query is presumed to hold,
and the interesting part is what properties we can discover to
justify the query. We will discuss a similar but more easily
formalized application to learning input filters later.

In this work, we show how for a large class of oblivious
backward search algorithms for reasoning, we can explic-
itly identify rules that suffice to answer queries. Thus, we
explicitly identify a sufficient set of relevant rules from this
“implicit” knowledge base in a goal-driven fashion. Oblivi-
ousness means that the only effect of the knowledge base on
the search is to terminate branches early when the subgoal is
already present in the knowledge base. We observe that this
suffices to learn such rules for logics such as chaining and
treelike resolution where there are natural oblivious (or nearly
oblivious) algorithms, e.g., DPLL-like algorithms [Davis and
Putnam, 1960; Davis et al., 1962]. This is achieved by deem-
ing subgoals to be successful by adding them to the knowl-
edge base when they are supported by the data; if the search



is obvlivious, then we obtain the same results as if those for-
mulas had belonged to the knowledge base all along.

Our algorithms resemble algorithms arising in inductive
logic programming (ILP) [Muggleton and De Raedt, 1994],
in particular work by Muggleton and Buntine [1988] that con-
structed rules for resolution; although Muggleton [1991] an-
ticipated that a connection to PAC-Learning should exist, ILP
learning theory is quite different. The main distinction here
is conceptual: ILP treats the input examples as defining a do-
main for which we seek to synthesize a description. By con-
trast, in PAC-Semantics, we are only seeking to bound the
probability our formulas are true with respect to some proba-
bility distribution D over valuations. Relatedly, the examples
are simply drawn from D, and thus only statistically repre-
sentative of it. We thus do not have complete knowledge of
D nor do we even have access to the valuation of every for-
mula in any given example. Although this bounding of prob-
ability is similar to a probability logic (e.g., as discussed by
Nilsson [1986] for propositional logic or Halpern [1990] for
first-order), we stress that the logical languages we use are
simple Boolean logics such as chaining and resolution, and
the probability bounds appear only in our semantics.

2 Problem formulation
We now describe the framework we use for learning and rea-
soning from partial examples (interpretations). First, we de-
scribe learning from partial examples, and give the key defini-
tion of concealment that captures when a credulous strategy
for learning from partial examples will succeed. (Skeptical
learning is considered later.) We then define a family of back-
ward search algorithms, the family of algorithms for which
we will be able to introduce query-driven learning. Since our
guarantees will have the form of ensuring that these reason-
ing algorithms are as successful as if they had started their
search with the learned knowledge given up-front, we will
need a technical condition that the search algorithms are not
too sensitive to the contents of the knowledge base they are
given up-front—that is, “oblivious” to the knowledge base.
Indeed, this definition will guarantee that we can introduce
learned knowledge as the search proceeds without harming
its performance, which is our main strategy.

2.1 Learning and reasoning in PAC-Semantics
Following Valiant [2000], we will describe our logic in terms
of the linear threshold connective (a common generalization
of the usual AND and OR connectives). The linear thresh-
old connective has the advantage that it can capture softened
versions of AND and OR.
Definition 1 (Threshold connective) A threshold connec-
tive for a list of k formulas ϕ1, . . . , ϕk is given by a list of
k + 1 integers, c1, . . . , ck, b. The formula [

∑k
i=1 ciϕi ≥ b] is

interpreted as follows: given a Boolean interpretation for the
k formulas, the connective is true if

∑
i:ϕi=1 ci ≥ b.

A threshold connective expresses a k-ary AND connective by
taking the ci = 1, and b = k, and expresses a k-ary OR by
taking c1, . . . , ck, b = 1. Negation corresponds to ci < 0.

Although we could have taken the weights to be real-
valued, on account of the ϕi’s essentially taking values from

{0, 1}, any real-valued threshold connective has an equiva-
lent integer connective. We use integers as they are simpler
to represent and reason about.

Example 2 Suppose we have one, unary relation symbol R
and six elements in our domain, x1, x2, x3, x4, x5 and x6.
Now, an example of a formula using a threshold connective is

[5R(x1) +R(x2) +R(x3) +R(x4) +R(x5)−R(x6) ≥ 4],

i.e., with formulas ψi = R(xi), weights c1 = 5, c6 = −1,
and c2, . . . , c5 = 1, and a threshold of b = 4.

We will assume a finite domain, and hence a finite (but pos-
sibly large) number of ground atomic formulas, N . Thus, our
setting is essentially propositional. We will formulate our ex-
position in terms of a simplified first-order language without
functions, in which free variables are taken to be universally
quantified; these quantified formulas are of course equivalent
to a quantifier-free (propositional) formula given by an AND
(expressed by a threshold connective) over copies of the for-
mula with each possible binding of the free variables. This is
an example of the standard “propositionalization” transfor-
mation, and a suitable family of formulas for these purposes
is described by Valiant [2000]. Nevertheless, this represen-
tation captures standard settings of (function-free) resolution
and chaining with Horn KBs.

The main feature of PAC-Semantics is a probability dis-
tribution D on interpretations of the relation symbols, i.e.,
assignments of truth values to their groundings. Equivalently,
we take each ground atomic formula as a Boolean-valued ran-
dom variable. We stress that we do not assume independence
(or any other relationship) between these random variables.
Given an interpretation drawn fromD, the semantics of a for-
mula are then defined classically. KB |= ϕ denotes that ϕ is
a (classically) valid formula given the knowledge base (set of
formulas) KB. We denote the truth value of a formula ϕ un-
der an interpretation x as ϕ|x. We may view an interpretation
as a Boolean vector indexed by the set of ground atomic for-
mulas. Following Valiant [2000], we refer to interpretations
of the ground atomic formulas as scenes.

Definition 3 ((1− ε)-valid) A sentence (i.e., formula with
no free variables) ϕ is said to be (1 − ε)-valid under D if
the probability that ϕ evaluates to true under an interpreta-
tion drawn from D is at least 1− ε. If ε = 0, we say that ϕ is
perfectly valid.

Now, an obscured scene is a partial interpretation of the
ground atomic formulas of the logic:

Definition 4 (Obscured scene) A obscured scene ρ is a map-
ping taking ground atomic formulas to {0, 1, ∗} where * de-
notes an “unknown” value. We say that an obscured scene ρ
is consistent with an interpretation if whenever ρ assigns an
ground atomic formula a value other than ∗, the interpreta-
tion agrees with ρ.

We need obscured scenes because frequently our knowl-
edge base will refer to atomic formulas that are not observed
in the data we use for learning. Sometimes these unobserved
atomic formulas take the form of properties we wish to reason
about or predict with learned rules. Following Rubin [1976]



and Michael [2010], we suppose that a “masking process”
takes interpretations drawn from the distribution D and hides
some ground atomic formulas, producing obscured scenes.

Definition 5 (Masking process) A mask is a function map-
ping interpretations to obscured scenes that are consistent
with the respective interpretations. A masking process M is
a mask-valued random variable (i.e., a random function). We
denote the probability distribution over obscured scenes ob-
tained by applying a masking process M to a distribution D
over interpretations by M(D).

Some natural examples of masking processes that don’t use
the full expressive power of the formalism are the following.

Example 6 Consider masking processes that always produce
a mask m that hides the values of a subset of the ground
atomic formulas, and never hide the rest. Such masking
processes capture the information available in a (learning-
driven) program analysis application where the examples
specify an input and nothing else. The hidden formulas would
then encode the omitted trace of the program’s execution. It
also captures the information available in typical statistical
studies in which a subset of the attributes of sampled mem-
bers of a population are (reliably) recorded, and the rest are
omitted from the data.

Example 7 Consider a masking process that independently
tosses a fair coin to decide whether or not to hide the value
of each ground atomic formula in a given scene. So M pro-
duces m by sampling a set S at random by tossing a fair coin
for each ground atomic formula, and then the corresponding
m is of the type described in Example 6 – it hides the ground
atomic formulas in the random set S and no others. This cap-
tures a setting where, due to noise corrupting a transmission,
only portions of a scene can be decoded.

These examples do not use the ability of a masking process
to optionally hide an atom depending on the underlying truth
value, but our definition allows this.

Example 8 Consider a setting where in a survey, partici-
pants are allowed to decline to answer a question. Natu-
rally, one might find that when participants have (for exam-
ple) atypically high or low income, or where they possess mi-
nority political opinions, or suffer from certain kinds of dis-
eases, they might be less inclined to provide an answer. Thus,
in such a setting, the survey responses would be more natu-
rally modeled by a masking process in which, given that the
sampled member of the population falls into one of these cat-
egories, the probability of the value being obscured is much
higher than otherwise. Indeed, the model also allows for the
decision to mask to depend on more than one attribute of the
example (note that m(x) is allowed to depend on the entire
interpretation x) – e.g., m(x) may omit the value of the for-
mulas encoding the political inclinations only if they are rel-
atively inconsistent with some other attributes of the respon-
dent encoded by x.

For a given ground atomic formula α, a PAC-Learning al-
gorithm could be used to learn a formula ϕ that predicts α, in
which case the formula [ϕ ≡ α] is (1−ε)-valid with probabil-
ity 1 − δ over the random example scenes (for δ given to the

algorithm): if we may take the truth value of α as a label and
the truth values of the ground atomic formulas as attributes
for the example scenes, then PAC-Learning uses such exam-
ples to produce precisely such a formula ϕ as output. Using
such a rule, we could hope to infer the value of α in examples
in which it is obscured. Such an approach was proposed by
Valiant [2000], and we will return to it later.

Following Juba [2013], we will consider the following
operation that uses obscured scenes to partially evaluate
quantifier-free formulas defined using linear threshold con-
nectives. Again, these could have been obtained from first-
order formulas by propositionalization. Note that the re-
cursive definition corresponds to a linear-time algorithm for
computing these partially evaluated formulas:
Definition 9 (Partial evaluation and witnessing) Given an
obscured scene ρ and a quantifier-free formula ϕ, the partial
evaluation of ϕ under ρ, denoted ϕ|ρ, is recursively defined
as follows; when the partial evaluation produces a Boolean
constant, we say that the formula is witnessed:
• A ground atomic formula ϕ is replaced by its value un-

der ρ (i.e., it is witnessed) unless this value is *, in which
case it remains ϕ.
• If ϕ = ¬ψ and ψ is not witnessed in ρ, then ϕ|ρ =
¬(ψ|ρ); otherwise, ϕ|ρ is witnessed to be ¬(ψ|ρ).
• For ϕ = [

∑k
i=1 ciψi ≥ b],

– ϕ is witnessed true if
∑
i:ψi witnessed true ci +∑

i:ψi not witnessed min{0, ci} ≥ b,
– ϕ is witnessed false if

∑
i:ψi witnessed true ci +∑

i:ψi not witnessed max{0, ci} < b,
– and otherwise, supposing that ψ1, . . . , ψ` are wit-

nessed in ρ (and ψ`+1, . . . , ψk are not witnessed),
ϕ|ρ is [

∑k
i=`+1 ci(ψi|ρ) ≥ d] where d = b −∑

i:ψi|ρ=1 ci.

Example 10 Continuing Example 2, in any partial
scene in which R(x1) is witnessed true, we find that∑
i:ψi witnessed true ci +

∑
iψi not witnessed min{ci, 0} is at least

5 − 1 = 4, so the formula will be witnessed true. Likewise,
if R(x2), . . . , R(x5) are true and R(x6) is false, then the
formula is again witnessed true. But, if R(x1) is false
and R(x6) is true, then the formula is witnessed false, as
it is if R(x1) is false and any of R(x2), . . . , R(x5) are
false. Finally, the formula is not witnessed if, for example,
R(x1) and R(x6) are both false, and any proper subset of
R(x2), . . . , R(x5) are true.

Following Michael [2010], we consider learning from ex-
ample obscured scenes, provided that the value of α is not
obscured in too many of the examples. Essentially we dis-
tinguish formulas that are perfectly valid under the unknown
distribution from those that are not even (1−ε)-valid for some
given ε > 0. The main finding is that the learnability of such
rules is controlled by the probability of observing counterex-
amples to flawed rules under the masking process.
Definition 11 (Concealment) We say that a masking process
M is (at most) (1 − η)-concealing with respect to a set of
formulas C and a distribution over interpretations D if
∀ϕ ∈ C Pr

x∈D,m∈M
[ ϕ witnessed on m(x) | ϕ|x = 0 ] ≥ η.



We observe that the degree of concealment of a family of
formulas depends on the family of formulas, the distribution
over scenes, and the masking process.
Example 12 In the masking process of Example 6, in which
a fixed subset of the ground atomic formulas is never hidden
and the rest are always hidden, the degree of concealment
depends on whether or not the formula in question is ever
falsified on the distribution, and if so, which ground atomic
formulas in the scene it refers to. Generally, for formulas that
only refer to the observed ground atomic formulas, the mask-
ing process is 0-concealing (i.e., η = 1, no discounting) but
for formulas that only refer to the unobserved ground atomic
formulas, the masking process is 1-concealing (η = 0) and
learning is, strictly speaking, impossible. It may still be pos-
sible to infer the values of these attributes by reasoning, how-
ever, e.g., in the program analysis example we may be able to
use the program code to infer the values of the program state
from an example input.

Example 13 In the case of the masking process of Exam-
ple 7, where the ground atomic formulas are hidden uniformly
at random, the degree of concealment may be bounded by the
number of distinct ground atomic formulas: if we observe all
k of the ground atomic formulas we certainly observe the for-
mula being falsified, and this occurs with probability 1/2k.
Thus, the masking process in this case would be (1 − 1/2k)-
concealing (η = 1/2k). In this case, we can take the number
of ground atomic formulas that appear in a formula as a mea-
sure of its complexity. Some natural fragments of logics, such
as bounded-width resolution, limit the number of atomic for-
mulas that may appear in the lines of a proof, and would thus
control the degree of concealment for lines of the proof for
this masking process.

In the statement of our main theorem, we include the size
of the input query formula as a parameter, and we suppose
that the degree of concealment may depend on this parameter.
This is because it is sometimes possible to bound the number
of distinct formulas that can appear in proofs by the number
of proofs, which may be bounded similar Lemma 22, below.
The number of proofs may sometimes depend, in turn, on the
number and complexity of the premises which are encoded
in the query – consider for example, proofs with a bounded
number of lines. We have included this parameterization to
facilitate the application of our theorem in such situations.

Bounded concealment justifies a “credulous” learning
strategy: rules are satisfactory as long as we do not observe
counterexamples to them.

Proposition 14 (Theorem 2.2 of [Michael, 2010]) For any
distribution D over interpretations, masking process M , and
class C of formulas, if M is (1 − η)-concealing with re-
spect to C and D and ϕ ∈ C is not (1 − ε)-valid, then
Prρ∈M(D)[ϕ|ρ = 0] ≥ ηε. Conversely, if M is not (1 − η)-
concealing with respect to C and D then there exists ϕ ∈ C
such that Prρ∈M(D)[ϕ|ρ = 0] ≤ ηPrx∈D[ϕ|x = 0] (where,
note, ϕ is (1− Prx∈D[ϕ|x = 0])-valid).

That is, the degree of concealment controls the discounting
of the probability of observing counterexamples to formulas
from C. We have actually modified the definitions slightly

from the original version by including the distribution in the
definition of concealment, and moreover, by using a notion of
witnessed evaluation (as opposed to the value merely being
determined by the obscured scene) but the proof is similar.

In the above formulation of PAC-Learning using equiva-
lence rules, this means that for any incorrect hypothesis in
our representation class, the value of α should be witnessed
(by the masking process) on an example where the hypothe-
sis is incorrect with probability at least η. It turns out that for
many classes of interest, learning is still possible as long as
the masking process features an η bounded away from zero.

In this work, we are interested in reasoning problems, in
which we only consider proofs of bounded complexity. For
simplicity our formulation is again presented in terms of
ground formulas, which could have been obtained by propo-
sitionalization. Formally, we consider the following family of
problems:

Definition 15 (Search problem) Fix a logic, and let P be a
set of proofs in the logic (e.g., a fragment of bounded com-
plexity). The search problem for P is then the following
promise problem: given as input a formula ϕ with no free
variables and a set of formulas KB such that either there is
a proof of ϕ in P from KB or else KB 6|= ϕ, return such a
proof in the former case, and return “Fail” in the latter.

Our first example of such a fragment is a mild generaliza-
tion of the usual forward-chaining system that was presented
by Valiant [2000]. It is designed to utilize rules of the form
[ϕ ≡ α] in which α is an atomic formula, i.e., of the sort
obtained from PAC-Learning algorithms. The main inference
rule is chaining: given a formula of the form [ϕ ≡ α] in which
α is a ground atomic formula, and a consistent set of literals
(atomic formulas or their negations) {`1, . . . , `k} such that
for the obscured scene ρ that satisfies `1, . . . , `k (and leaves
every ground atomic formula not appearing in this list unas-
signed) ϕ|ρ ∈ {0, 1}, if ϕ|ρ = 0, infer ¬α, and otherwise
(i.e., if ϕ|ρ = 1) infer α.

In chaining, it is typical to distinguish ground atomic for-
mulas (“facts”) and “rules” of the form [ϕ ≡ α]; in some
formulations, we suppose that only the facts appear as lines
of the proof and take the rules to be rules of inference. This
limits the complexity of the proofs that may appear in the
fragment: they are just ordered lists of facts. In particular,
recall that one often considers augmenting the axioms of a
logic with a set of additional formulas – “hypotheses” – that
capture a specific domain or a specific scene one wishes to
reason about. Typically, these hypotheses are the contents of
the knowledge base. In the case of forward-chaining, for ex-
ample, often these hypotheses are restricted to be just a set of
(additional) facts. We will suppose in particular that the set
of proofs P parameterizing our search problem may restrict
the formulas that may be used as hypotheses in this way.

2.2 A model of backward search algorithms
Informally, “backward” (goal-directed) algorithms start with
a goal query and repeatedly generate sets of subgoal queries
such that if all of the subgoal queries succeed – i.e., if proofs
can be found for all of these subgoal queries – then the al-
gorithm can construct a proof of the goal query. Although



this informal description suggests a recursive algorithm, it is
highly desirable to cache the results of subgoal queries when
they are answered—beyond the obvious time-efficiency im-
provements, it is often possible for a naı̈ve recursive algo-
rithm to get stuck following a circular sequence of subgoals.
Thus, our model of such algorithms will be stated in terms
of a graph indicating the dependency structure among the
(sub)goals considered by the algorithm.

This graph would conventionally be an “AND-OR” graph:
a query would be associated with an OR node, with edges
to various alternative lists of subgoal queries, represented by
AND nodes with edges to the OR nodes corresponding to the
queries in the list. The success of the algorithm corresponds
to the goal query node evaluating to ‘true’ in the natural in-
terpretation of such a graph when one more generally asso-
ciates success at finding a proof of a (subgoal) query with a
node evaluating to ‘true.’ Given our interest in using rules
expressed using linear threshold connectives, though, we will
find it natural and convenient to replace the AND nodes with
more general “linear threshold” nodes, expressing that suc-
cess at the node is achieved if an appropriate subset of the
subgoals are successful.

Definition 16 (Subgoal dependency graph) A subgoal de-
pendency graph is a (possibly infinite) directed graph G in
which the vertices are either query nodes labeled with a for-
mula or are labeled with an integer threshold and have out-
going edges labeled by integer weights. A partial subgoal
dependency graph also contains, for each threshold vertex,
weights w+ and w−. Given sets of successful nodes S and
unsuccessful nodes U in the partial graph G′, each node v
is considered successful using S,U if there is an acyclic sub-
graph ofG′ featuring v as the (unique) source with sinks from
S ∪ U such that v has a path to every sink and at every non-
query node, the sum of the weights on the outgoing edges to
vertices in S plus w− and the negative weights on outgoing
edges to vertices outside S or U is at least the threshold. Sim-
ilarly, v is unsuccessful if the sum of the weights on outgoing
edges to vertices in S plus w+ and the positive weights of
edges to vertices outside S and U is less than its threshold.

Our rule for determining when a vertex is successful or un-
successful match our rules for witnessing connectives true
and false, respectively. The weights w+ and w− will allow
us to determine witnessing with (unwitnessed) unrepresented
vertices. They represent the total weight of unrepresented
vertices with positive coefficients and negative coefficients,
respectively; note that the definition of witnessing uses one
to establish a formula is witnessed true and the other to es-
tablish that it is witnessed false. Our sucessful vertices will
intuitively represent either a provable query, or an applicable
inference.

The backward search algorithm is now a meta-algorithm
(Algorithm 1) parameterized by three sub-algorithms. One
algorithm, GENERATE, generates the subgoal dependency
graph, and another, EXPLORE, chooses edges in the depen-
dency graph to explore (as long as the algorithm is not done).
The third algorithm, TEST, generates a proof of the query if
enough of the subgoal dependency graph has been revealed
so that the original goal vertex was successful (given the ax-

input : Query formula ϕ, set of formulas KB
begin

if ϕ ∈ KB then
return Trivial proof of ϕ

end
G← vertex labeled by ϕ, marked “unexplored”
while TEST(G,ϕ,KB) = FAIL do

if v ←EXPLORE(G,ϕ,KB) is not FAIL then
if G′ ←GENERATE(G, v) is not “fully
explored” then

if G′ contains a vertex not in G, not
labeled with ψ ∈ KB then

Mark the new vertex “unexplored.”
end
G← G′

end
else Remove “unexplored” mark from v

end
else return Fail

end
return TEST(G,ϕ,KB)

end
Algorithm 1: Backward search meta-algorithm

ioms and a knowledge base as successful vertices), or else
indicates that the search is not successful yet. Thus, the algo-
rithm explores the subgoal dependency graph (starting from
the original query) until an appropriate collection of success-
ful subgoals is discovered or the search algorithm gives up.
Definition 17 (Backward search algorithm) A backward
search algorithm is given by an instantiation of Algorithm 1
with three algorithms:
• An algorithm EXPLORE that, given a finite partial sub-

goal dependency graph G with a source labeled by ϕ
and a subset of vertices marked “unexplored,” and set
of formulas KB, chooses an unexplored vertex v ∈ G
or outputs “FAIL.”
• An algorithm GENERATE that, given a partial subgoal

dependency graph G and a vertex v ∈ G either returns
“fully explored” or returns a subgoal dependency graph
G′ that extends G by adding one new edge starting from
v, possibly to a new vertex, and reducing w+ or w− by
its weight if it is positive or negative, respectively.
• An algorithm TEST that, given a partial subgoal depen-

dency graph G, a query formula ϕ labeling some vertex
of G, and a set of formulas KB, either returns a proof
of ϕ from KB, or if the vertex labeled by ϕ is not suc-
cessful using KB and the axioms of the logic, returns
“FAIL.”

A key property possessed by instantiations of the
backward-search paradigm is that the graph generation algo-
rithm is often oblivious to which queries are successful, the
algorithm exploring the graph only “terminates early” when
it encounters a vertex labeled by a successful query, and the
algorithm recovering the proof depends only on the portion of
the subgoal dependency graph revealed thus far (and the for-
mulas appearing on query vertices appearing in it). We will
restrict our attention to such oblivious algorithms.



Definition 18 (Oblivious backward search algorithm) We
say that a backward search algorithm is oblivious if:

1. For any partial subgoal dependency graph G, query
ϕ (contained as a label in G), and set of formu-
las Φ not appearing as labels of query nodes in G,
TEST(G,ϕ,KB) = TEST(G,ϕ,KB ∪ Φ).

2. For any query ϕ and sets of formulas KB and Φ, the
execution of the algorithm on inputϕ andKB∪Φ differs
from the execution on input ϕ and KB only in that the
sequence of vertices proposed by EXPLORE on input ϕ
and KB ∪ Φ is the subsequence of vertices proposed
on input ϕ and KB that omits (skips) exploring vertices
in the sequence that are successful from KB ∪ Φ in the
partial subgoal dependency graph used by the algorithm
in the corresponding step.

An example: oblivious backward chaining
We briefly note that standard backward-chaining algorithms
(for Horn KBs on ground atomic formulas) are oblivious
backward search algorithms in the sense of Definition 18:
recall that a Horn clause is a formula of the form [α1 ∧
· · · ∧ αk] ⇒ αk+1 where each αi is a ground atomic for-
mula. αk+1 is the head whereas α1 ∧ · · · ∧ αk is the body.
The knowledge base then consists of such clauses and a set
of ground atomic formulas. The query is a conjunction of
ground atomic formulas, represented as a threshold vertex
with a threshold equal to the number of atomic formulas in
the conjunction.

The oblivious backward chaining algorithm works as fol-
lows: EXPLORE performs a depth-first search of the subgoal
dependency graph, terminating a search early only when it
encounters an atomic formula in KB. GENERATE, on the
other hand, when given a vertex corresponding to a ground
atomic formula, returns an edge to a threshold vertex corre-
sponding to the next clause in KB with the given atomic for-
mula appearing in the head (in some fixed ordering), with a
threshold equal to the number of atomic formulas in the body;
when given a vertex corresponding to one of the clauses of
KB (or the goal conjunction), it returns an edge to the ver-
tex labeled with the next atomic formula in the body (also
in some fixed ordering) of weight 1. Finally, TEST uses a
dynamic programming algorithm to check if the query is suc-
cessful from KB and return a chaining proof if it is. The
running time is bounded by a polynomial in the size of KB:
it runs for a linear number of iterations, and TEST may take
quadratic time on each iteration.

Example 19 We now illustrate the backward search algo-
rithm for chaining of Horn rules. Let’s consider the fol-
lowing simple domain, concerning fragile objects. The re-
lations are fragile(x), broken(x), hard(x), crushed(x),
and hit(x, y). We have a KB containing rules [crushed(x)∧
fragile(x)] ⇒ broken(x) and [hit(x, y) ∧ fragile(x) ∧
hard(y)] ⇒ broken(x). Let’s suppose that the domain of
objects consists of sculpture, crate, floor, and sidewalk.
As an example, we might indicate that a fragile sculpture
is crushed – fragile(sculpture) and crush(sculpture) are
given – and we wish to know if broken(sculpture) holds.
The full subgoal dependency graph is depicted in Figure 1.

A short execution of the backward search algorithm

starts with the query node, broken(sculpture). TEST on
broken(sculpture) determines that this fact is not given, so
the algorithm invokes EXPLORE which determines that the
vertex broken(sculpture) is not yet fully explored. So, the
algorithm invokes GENERATE on broken(sculpture) which
begins generating the rules that could produce broken(x) in
the head with sculpture substituted for x. For simplicity,
let’s suppose that it first considers the rule [crushed(x) ∧
fragile(x)]⇒ broken(x), which is such a rule. This thresh-
old vertex represents an AND on two conjuncts, so it has a
threshold of 2. As the graph is partial, it has values w+ = 2
since both of the conjuncts (yet to be generated) have a weight
of 1 > 0 and w− = 0 since this threshold formula does not
use negative weights. Note that none of the nodes are yet wit-
nessed, so TEST will continue to the next iteration.
EXPLORE would, if it is a depth-first exploration, choose

the new rule to explore. So it would invoke GENERATE
on the rule, which would first yield the subgoal node
crushed(sculpture) and reduce the value of w+ for the
threshold by 1 (since one of these nodes is now represented
in the graph). Note that crushed(sculpture) is in the KB,
so this vertex will not be marked “unexplored.” Furthermore,
this node is successful, since it is in the KB. But, the rule that
uses crushed(sculpture) is not yet witnessed since it also
needs fragile(sculpture), so TEST will continue to the next
iteration.

Now, since the new node is not marked “unexplored,”
the depth-first EXPLORE would return to the rule, and
GENERATE next generates the subgoal fragile(sculpture),
which is also in the KB, and reducing w+ (at the
rule’s vertex) by 1 to 0. At this point, TEST will dis-
cover that crushed(sculpture) and fragile(sculpture)
suffice to witness the linear threshold corresponding to
[crushed(sculpture) ∧ fragile(sculpture)], so this node
is successful, which in turn witnesses that the original goal
broken(sculpture) is successful. Thus, TEST returns the
chaining proof of the query

1. crushed(sculpture) (hypothesis)
2. fragile(sculpture) (hypothesis)
3. broken(sculpture) (chaining, 1 & 2, [crushed(x) ∧
fragile(x)]⇒ broken(x)/x = sculpture)

Needless to say, the execution would be rather longer if
the search had first started exploring the various domain
substitutions for y in the rule [hit(x, y) ∧ fragile(x) ∧
hard(y)] ⇒ broken(x). A breadth-first search of the graph
would have been similarly longer. Note that there are no
rules with hit(x, y) or hard(x) in the head, so although these
nodes will initially be marked “unexplored” (in contrast to,
say, fragile(sculpture)), when GENERATE considers these
nodes it will immediately report that they are “fully explored.”
Thus, after exploring these rules, the search will eventually
return to exploring [crushed(x)∧fragile(x)]⇒ broken(x)
and succeed as described above, even in these cases.

Now, suppose that the sculpture hits the floor, so
hit(sculpture, floor) holds instead of crushed(sculpture).
Now, we are not given hard(floor) (the floor may be car-
peted) so there is no proof of broken(sculpture). In this
case, the backward search algorithm will generate the entire
subgoal dependency graph, before determining that the query



broken(sculpture)

[crushed(x)∧fragile(x)]⇒broken(x)

crushed(sculpture) fragile(sculpture)

hit(sculpture,crate) hard(crate)

hit(sculpture,floor)hard(floor)

hit(sculpture,sidewalk)

hard(sidewalk)

[hit(x,crate)⋀fragile(x)⋀hard(crate)]⇒broken(x)

[hit(x,floor)⋀fragile(x)⋀hard(floor)]⇒broken(x)

[hit(x,sidewalk)⋀fragile(x)⋀hard(sidewalk)]⇒broken(x)hit(sculpture,sculpture)

hard(sculpture)

[hit(x,sculpture)⋀fragile(x)⋀hard(sculpture)]⇒broken(x)

Figure 1: A (AND-OR) subgoal dependency graph for the query broken(sculpture) with backward chaining using our Horn KB. The
threshold nodes are labeled with the corresponding groundings of the rules of the KB. ANDs are represented by arcs connecting edges.

is not provable, and terminate with Fail.

3 Query-driven learning in backward search
The relative blindness of oblivious algorithms to the contents
of the knowledge base allows us to add new members as
the search proceeds, and obtain the same result as if we had
started with them. As some algorithms may consider fami-
lies of formulas that scale with the size of the query, in our
theorem we will parameterize our bounds on the proof size
B and degree of concealment η by the size of the query ` (in
bits). For example, adding clauses to a query for resolution
generally increases the variety of clauses that may be derived.
For larger families, we expect that the bounds grow weaker.
We will use |ϕ| for a formula ϕ to denote its representation
size (in bits), and |KB| to denote the representation size of
the KB, again in bits. We assume the KB is represented in
a way that ensures |KB ∪ H| ≤ |KB| + |H|, e.g., if it is
represented as a string in which the elements are separated by
special symbols, and terminated by another symbol.
Theorem 20 Let P be a set of proofs such that proofs of
queries of length ` only have proofs with B(`)-bit encodings
in P (in some fixed encoding scheme). Suppose there is an
oblivious backward search algorithm for the search problem
for P that on input ϕ and KB over N ground atomic for-
mulas, runs in time T (N, |ϕ|, |KB|) (for a function T that is
monotone increasing in |KB|). Let D be a distribution over
scenes andM be a masking process that is at most (1−η(`))-
concealing for the set of formulas Φ that may be hypotheses in

proofs of formulas of length ` in P . Then for any δ, ε ∈ (0, 1),
on input ϕ and KB and Θ( 1

εη(|ϕ|) (B(|ϕ|) + log 1/δ)) exam-
ple obscured scenes, Algorithm 2 using the same EXPLORE,
GENERATE, and TEST as the given algorithm runs in time
O( B(|ϕ|)

εη(|ϕ|) (B(|ϕ|) + log 1/δ)T (N, |ϕ|, C)) (for C = |KB|+
T (N, |ϕ|, |KB|)), and with probability 1− δ
• returns “Fail” if [KB ⇒ ϕ] is not (1 − ε)-valid with

respect to D, or
• returns a proof of ϕ from KB ∪H ′ for a set of formulas
H ′ = {h′1, . . . , h′k} such that h′1 ∧ · · · ∧ h′k is (1 − ε)-
valid if there exists a set of perfectly valid formulas H
such that there is a proof of ϕ from KB ∪H in P .

We remark that the cases are not exhaustive, for two reasons.
First, for many logics, the fragments for which proof search
can be considered tractable are not complete. Second, it may
be that the query formula is indeed (1 − ε)-valid, but that
there is not a set of formulas that we can learn in support of
it. For example, in chaining it may be that we have p→ r and
q → r, and we never observe r but we do observe either p or
q to be true, half of the time each. So, we know r is always
true, but since neither p nor q is consistently true, neither one
can be learned.
Proof: First suppose that there is a set of perfectly valid
formulas H such that there is a proof of the query ϕ from
KB ∪H in P . Since we have assumed that the given back-
ward search algorithm solves the search problem for P , on
input ϕ and KB ∪ H , the given backward search algorithm



input : Query formula ϕ, set of formulas KB, list of
obscured scenes ρ1 . . . , ρm

begin
G← vertex labeled by ϕ, marked “unexplored”
while TEST(G,ϕ,KB) = FAIL do

if v ←EXPLORE(G,ϕ,KB) is not FAIL then
if G′ ←GENERATE(G, v) is not “fully
explored” then

if G′ contains a query vertex labeled by
a formula h not in G and for no ρi is
h|ρi = 0 then KB ← KB ∪ {h}
if G′ contains a vertex not in G, not
labeled with ψ ∈ KB then

Mark the new vertex “unexplored.”
end
G← G′

end
else Remove “unexplored” mark from v

end
else return Fail

end
return TEST(G,ϕ,KB)

end
Algorithm 2: Backward search with query-driven learning

would return a proof of ϕ fromKB∪H . Suppose this occurs
after t∗ iterations.

Now, consider the sets KB′t and subgoal dependency
graphs G′t used on each respective iteration t by Algorithm 2.
If we consider the runs of the given algorithm usingKB′t, we
see that since it is assumed to be oblivious, on each step up
to t, it proposes the same vertex to explore as Algorithm 2
(i.e., it only omits the vertices that are successful from KB′t)
and thus generates the subgoal dependency graph G′t on the
tth step. Furthermore, we note that since KB′t contains the
subset of KB ∪H that appears as labels in G′t, every vertex
of G′t that is not deemed successful from KB′t is likewise not
successful from KB ∪ H in the graph generated on the tth
step on input ϕ and KB ∪H . Therefore, if Algorithm 2 runs
for t∗ iterations, ϕ is successful from KB′t∗ . Moreover, as
EXPLORE continues to propose the vertices of G′t not suc-
cessful from KB′t on each step (since it is oblivious) until the
vertex labeled by ϕ is successful, another unsuccessful vertex
must exist. Therefore the algorithm can only terminate be-
fore t∗ iterations if TEST returns a proof and so either way
Algorithm 2 returns a proof of ϕ in P from some KB′t.

The running time is bounded as follows: we see that the
algorithm runs for no more iterations than before, and the fi-
nal size of KB′t is at most |KB| plus the algorithm’s run-
ning time, since the algorithm creates vertices represent-
ing each formula added to KB′t. Ignoring the time to test
the proposed vertices for membership in KB′t, the running
time may be at most T (N, |ϕ|, |KB′t|) ≤ T (N, |ϕ|, |KB| +
T (N, |ϕ|, |KB|)). Now, each formula tested appears as a
premise in some proof in P and therefore has a representation
of size at most B(|ϕ|). Since we can determine the witnessed
value of a formula on a given obscured scene in linear time
the time bound follows.

We now argue that with probability 1 − δ over the exam-
ple obscured scenes provided to the algorithm as input, any
proof that could be returned by Algorithm 2 uses a knowl-
edge base KB ∪H ′ such that the formula h′1 ∧ · · · ∧ h′k (for
H ′ = {h′1, . . . , h′k}) is (1 − ε)-valid. This will establish the
theorem as the existence of such a proof guarantees that the
query ϕ is (1 − ε)-valid, so if the first case holds, the algo-
rithm cannot produce a proof except with probability δ; and
likewise, in the second case, the proof returned by the algo-
rithm is satisfactory with probability 1− δ.

To this end, we note that since M is assumed to be
(1−η(|ϕ|))-concealing with respect to the premises that may
appear on any proof of ϕ in P , for any proof using a set
of premises that is not (1 − ε)-valid, Proposition 14 shows
that each example produces an obscured scene ρ for which
h′i|ρ = 0 for some h′i used as a premise with probability at
least εη(|ϕ|). Therefore, in a sample of Ω( 1

εη(|ϕ|) (B(|ϕ|) +

log 1/δ)) independent obscured scenes, the probability that
no premise of such a proof has h′i|ρ = 0 for any ρ in the
sample is at most δ · 2−B(|ϕ|); as the proofs in P for ϕ have
encodings of at most B(|ϕ|) bits, a union bound over these
proofs gives that the overall probability of some proof having
no ρ in the sample for which h′i|ρ = 0 for some premise in the
proof is at most δ. Now, as the algorithm only returns proofs
using premises contained in the sets KB′t which in particu-
lar do not contain formulas h′ such that h′|ρ = 0 for any ρ
in the sample, we see that with probability 1 − δ, the algo-
rithm does not return a proof with a set of premises that is not
(1− ε)-valid, as needed.

Example: backward chaining
If we represent chaining proofs by the sequence of inferred
ground atomic formulas (using logN bits for each), then
since any proof needs only write down an atomic formula at
most once, we can use the bound B = N logN in the state-
ment of Theorem 20. (The size of the query ` is always the
length of a single ground atomic formula, logN bits.) So, af-
ter applying the transformation depicted in Algorithm 2 to the
standard backward-chaining algorithm, Theorem 20 estab-
lishes that this modified backward chaining algorithm finds
chaining proofs of queries using not only ground atomic for-
mulas from the explicitly given KB, but also additional for-
mulas that are almost always true. The modified algorithm
automatically supplements a given KB with any such addi-
tional ground atomic formulas that suffice to complete some
chaining proof of a query if one exists, provided further that
the masking process has bounded concealment with respect
to ground atomic formulas—meaning here, the masking pro-
cess leaves the value of each ground atomic formula present
with some bounded probability when it is false.

Chaining does not feature a rule of inference that allows
new rules to be derived, so chaining algorithms never need
to consider rules outside KB. Hence, the proposed generic
transformation does not learn such rules. Other logics such
as resolution, which allow richer kinds of formulas to be de-
rived, yield more interesting query-driven learning. In prin-
ciple one could also consider a variant of backward-chaining
in which rules are learned as well. The difficulty with such a
variant lies in controlling the complexity of the search.



3.1 Skeptical query-driven learning
Theorem 20 relies on an assumption of bounded concealment,
and uses a credulous learning strategy of searching for hy-
potheses for which we do not possess counterexamples. A
more conservative strategy would replace the condition “for
no ρi is h|ρi = 0” in Algorithm 2 with the condition “for
all ρi, h|ρi = 1.” An h that is witnessed true with proba-
bility 1 will pass this condition. Moreover, if h|ρi = 1 for
ρi = mi(xi) (where mi is drawn from M and xi is drawn
from D), then h|xi = 1 as well. Thus, the probability that
an h that is not (1 − ε)-valid with respect to D passes this
test for m examples is less than (1 − ε)m. We can use this
observation in place of Proposition 14 to finish an analogous
proof, given that we are searching for an H that is always
witnessed rather than one that is merely perfectly valid. We
leave further details to an interested reader.

Example application: learning input filters
We note that our transformation for skeptical learning of rules
could be applied to static program analysis algorithms to au-
tomate the generation of sound and approximately complete
input filters. For example, the SIFT system [Long et al.,
2014] is based on a set of sound transformation rules for ana-
lyzing integer overflow errors in a given program. Its associ-
ated static analysis algorithm uses the knowledge base given
by these transformation rules and the program code to gener-
ate symbolic expressions that are propagated backwards from
integer operations that might produce overflows, until they re-
fer only to program inputs. The condition expressed by these
expressions may then be used to filter out inputs that do not
satisfy the condition. The soundness of SIFT’s transforma-
tion rules ensures that no input that passes this condition gen-
erates an integer overflow error.

We can interpret SIFT as taking the safety property of “no
integer overflows occur at the given point in the program”
as a query, and seeking a proof of this query using a prop-
erty of the input, together with the transformation rules and
program code. Note that once SIFT generates expressions
that refer only to input values, the conditions they express are
witnessed against example inputs, if they are (1 − ε)-valid
for inputs in practice. Thus, we can apply the transformation
of the skeptical variant of Algorithm 2 to the static analysis
algorithm used by SIFT, and we would obtain an algorithm
with a similar termination condition, with the added require-
ment that the condition found must be witnessed on a set of
given examples.

Thus, the distinction between the approach taken by Long
et al. and our transformation is that SIFT has no guarantee
that it produces a rule that is testable on real inputs.1 SIFT
does not use any training data, and simply terminates once it
finds a rule that refers only to the input; thus, while this rule
is sound – inputs that satisfy it provably do not generate in-
teger overflow errors – it has no guarantee of completeness,
approximate or otherwise. Indeed, SIFT conservatively con-
siders all possible execution paths and relatedly uses some

1Nevertheless, it has been empirically demonstrated that for a
certain piece of software, SIFT produces rules that are satisfied by
real inputs with high probability on a natural distribution [Juba et
al., 2015].

hard-coded limits on, for example the number of loop itera-
tions it considers in search of loop invariants, to ensure termi-
nation. If this limit is exceeded because the loop potentially
relies on an unbounded number of values (for example), then
SIFT simply fails to find a condition. Thus, there is scope
for a backtracking variant of SIFT’s static analysis algorithm
to obtain greater completeness by iteratively refining a sym-
bolic condition. Under our transformation, we would then
obtain an algorithm that searches for a condition on the in-
puts that empirically satisfies witnessing for a large fraction
of a training set of benign inputs.

3.2 Query-driven learning in treelike resolution
Recall that resolution is a logic that operates on clauses (ORs
of literals), using two kinds of inference rules: cut and (op-
tionally) weakening. Cut takes two clauses C = C ′ ∨ α
and D = D′ ∨ ¬α and produces a clause of the form
C ′ ∨ D′. (More general variants use substitutions to unify
distinct atomic formuals α and ¬α′.) Weakening, by con-
trast, simply adds new literals to the clause. Resolution is
typically used to prove a DNF (an OR of ANDs) by deriving
an (unsatisfiable) empty clause from its negation, a CNF.

DPLL [Davis and Putnam, 1960; Davis et al., 1962] is an-
other example of such a goal-directed search algorithm. In
particular, bounded variants of DPLL that (efficiently) solve
the proof search problem for space-bounded treelike resolu-
tion are known [Kullmann, 1999; Esteban and Torán, 2001].
This is the fragment of resolution refutations that can be de-
rived while (i) storing at most s clauses in memory simulta-
neously and (ii) “forgetting” a clause as soon as it is used in
a proof step (so that it must be derived again if it is needed
again). This is a second example of an algorithm into which
we can introduce query-driven explicit learning along the
lines of Theorem 20. The algorithm will be more interesting
because it will discover a CNF that suffices to complete the
proof out of an exponentially large (in terms of the number of
ground atomic formulas) set of possible such formulas.

Unfortunately, we cannot apply Theorem 20 directly, as
the standard algorithm is not actually oblivious in our strict
sense. The difficulty is that the base case of the recursive al-
gorithm involves a search for a hypothesis clause for which
we can derive the current clause via weakening. This “look-
ing ahead” into the hypothesis set means that the algorithm
may not engage in exactly the same search pattern if we mod-
ify the hypothesis set during the search. Nevertheless, the use
is innocuous enough that essentially the same technique can
be used to give a variant of the algorithm that learns an ex-
plicit set of clauses from the data.

Our analysis of explicit query-driven learning (following
Theorem 20) still requires a bound on the lengths of the
proofs in terms of the space (and number of ground atomic
formulas). We will need the observation that DPLL-like al-
gorithms produce normal resolution proofs:
Definition 21 (Normal) We will say that a resolution proof
is normal if in its corresponding DAG:

1. All outgoing edges from Cut nodes are directed to Cut
nodes.

2. The clauses labeling any path to the sink from a Cut node
contain literals using every variable along the path.



input : CNF ϕ, integer space bound s ≥ 1, current
clause C, list of obscured scenes ρ(1), . . . , ρ(m).

Learn+SearchSpace(ϕ, s, C, (ρ(1), . . . , ρ(m)))
begin

if No ρ(i) has C|ρ(i) = 0 then
return A proof asserting C (from H).

end
else if C is a superset of some clause C ′ of ϕ then

return The weakening derivation of C from C ′.
end
else if s > 1 then

foreach Literal ` such that neither ` nor ¯̀ is in C
do

if Π1 ←Learn+SearchSpace
(ϕ, s− 1, C ∨ `, (ρ(i) : `|ρ(i) 6= 1)) does not
return none then

if Π2 ←Learn+SearchSpace
(ϕ, s, C ∨ ¯̀, (ρ(i) : `|ρ(i) 6= 0)) does not
return none then

return Derivation of C from Π1 and
Π2

end
else return none

end
end

end
return none

end
Algorithm 3: Space-bounded resolution with learning

3. A given variable is used in at most one cut step and at
most one weakening step along every path from a source
to a Cut node.

Our bound is now given in the following lemma, slightly
modified from the work of Ehrenfeucht and Haussler [1989].

Lemma 22 (Lemma 1, Ehrenfeucht and Haussler 1989)
Let k be the number of nodes in a space-s normal treelike
resolution proof over N ground atomic formulas where
N ≥ s ≥ 1. Then,

1. 2s − 1 ≤ k ≤ 2(eN/(s− 1))s−1 where e is the base of
the natural logarithm.

2. There are at most (8N)(eN/(s−1))s−1

space-s normal
treelike proofs that do not use weakening.

Theorem 23 Let a clause C and a (KB) CNF ϕ be given.
Suppose the examples are drawn from a masking process
that is (1 − η)-concealing with respect to CNFs of size
(eN/s− 1)s−1 for the distribution D; suppose further that ϕ
is perfectly valid with respect toD and there exists some other
perfectly valid CNF H for which there is a space-s treelike
resolution proof ofC from ϕ∧H . Then, Algorithm 3 run on ϕ
andC with parameter s on a sample of size Θ((Ns−1 logN+

log 1
δ ) 1
ηε ) runs in time O(N

2(s−1)|ϕ|
ηε (Ns−1 logN + log 1

δ ))

and returns a proof of C from ϕ ∧ H ′ for some CNF H ′ of
size O(Ns−1) that is (1 − ε)-valid with respect to D with
probability 1 − δ. Similarly, if [ϕ ⇒ C] is not (1 − ε)-valid,
Algorithm 3 rejects in the same time bound using the same

number of examples.

Proof: First, consider the (possibly exponential size) for-
mula H̃ consisting of all clauses that are consistent with the
obscured scenes ρ(1), . . . , ρ(m). Noting we don’t need to use
weakening for clauses from H̃ since any clause that would be
derived by weakening is also in H̃ , the standard analysis of
algorithms for space-bounded treelike resolution [Kullmann,
1999] establish that Algorithm 3 finds a normal space-s tree-
like resolution proof of the input C from ϕ ∧ H̃ and runs in
timeO(m|ϕ|N2(s−1)) on a sample of sizem. When a 1-valid
space-s treelike proof is assumed to exist, it is in particular
consistent with every sample with probability 1, so the algo-
rithm outputs some proof in this case. It remains only to show
that, for a sample of size Θ( 1

ηε (N
(s−1) logN + log 1

δ )), any
such proof has its leaves labeled with a (1−ε)-valid CNF with
probability at least 1 − δ (and so in particular, the algorithm
cannot return a proof if [ϕ⇒ C] is not (1− ε)-valid).

Consider any space-s normal treelike resolution proof that
has leaves that are not labeled by a (1− ε)-valid CNF. Since,
by part 1 of Lemma 22, this CNF has at most O(Ns−1)
clauses, Proposition 14 shows that each example produces
a counterexample to this CNF with probability at least ηε.
Thus, in a sample of size Ω( 1

ηε (N
s−1 logN + log 1

δ )), the
probability that this CNF is consistent with the sample is at
most δN−Ω(Ns−1). Now, by part 2 of Lemma 22, there are
at most NO(Ns−1) possible proofs (up to weakening steps),
where we notice that Algorithm 3 introduces weakening steps
iff the clause is consistent with some clause of the (fixed)
input CNF ϕ. Therefore, the algorithm indeed considers at
most NO(Ns−1) distinct proofs, so for a suitable choice of
constant in the sample size, a union bound gives the probabil-
ity that Algorithm 3 encounters some proof from a CNF that
is not (1 − ε)-valid but consistent with the sample is at most
δ. Since the algorithm only outputs proofs that are consistent
with the sample, we therefore find that any proof it outputs is
derived from a CNF that is (1 − ε)-valid with respect to D
with probability at least 1− δ, establishing the claim.

Lemma 22 also shows treelike proofs of size k are neces-
sarily space-log(k + 1), so this gives a quasipolynomial time
and sample complexity algorithm for general treelike proofs.

4 Directions for future work
One main direction for future work concerns a slightly re-
laxed variant of the skeptical learning strategy, in which we
try to learn rules that are simultaneously witnessed true with
maximum frequency, which may be less than 1. What makes
this formulation challenging is that it cannot be achieved by
just seeking that the formulas at the individual nodes are each
witnessed with some probability 1 − ε: it matters which ε-
fraction of example scenes are not witnessed across the var-
ious rules, since we are interested in how many examples in
total fail to witness at least one of the hypotheses used in the
proof. This formulation seems to be a much harder computa-
tional problem, so it makes sense to ask what kind of approx-
imate solutions can be obtained.

Another direction for work concerns relational reasoning



algorithms. The usual algorithms for backward search in re-
lational reasoning generate substitutions during the search,
rather than generating grounded versions of the rules as we
do here. Although this creation of substitutions may create a
“non-oblivious” search (as viewed on the ground atomic for-
mulas), we suspect that it may again be innocuous enough
that our main theorem will still hold, as in the example of
weakening in resolution. Such algorithms would be much
more efficient, of course. The main difference is that we now
need to identify unifiers against the set of (all) example scenes
(in addition to formulas in the KB).

A related question, along the lines of the above but perhaps
more ambitious is, can we learn universally quantified expres-
sions in infinite or open domains? Again, our current method
generates ground expressions, and so we can only consider
domains with a reasonable number of elements. But, the cred-
ulous bounded concealment definition at least raises the pos-
sibility that we might be able to infer a universally quantified
statement based merely on the lack of observed counterexam-
ples. Of course, such inferences lean heavily on the bounded
concealment assumption.

A final direction is the development of further applications
of such algorithms. In addition to the natural application of
the algorithm in extracting knowledge that is suitable for hu-
man inspection in query driven learning, we have identified
two domains in which the kind of sound and approximately
complete rules our method generates would provide a useful
filtering criterion. It is natural to ask if there are any others.
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