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Abstract
In this paper, we discuss the work in progress on de-
signing a prototype for a novel declarative learning-
based programming system and present our prelim-
inary results. The main idea is to express learning-
based programs in terms of declarative domain
knowledge. Given that the existing ontologies con-
tain rich domain and world knowledge, we pro-
pose to automatically generate the learning-based
programs from the current ontology representation
languages such as OWL. The ontological concepts
and domain relationships are compiled to a graph
which is a partial program. The nodes in the graph
are connected to data sensors and learners. Local
training algorithms can use data and train learn-
ers corresponding to each concept and domain re-
lationship in the graph. Global inference mecha-
nisms make the final decisions based on the local
prediction of the learners and under the ontological
constraints. We test our framework on the entity-
mention-relation extraction task.

1 Introduction
Nowadays, experts in various problem domains try to use ma-
chine learning and data-driven solutions for real-world prob-
lems. There are many tools and languages that help to design
intelligent systems that use learning as their main component.
The goal of these tools is to provide a high level of abstraction
for designing learning models that make the low-level algo-
rithmic details transparent from the users perspective. The
most ambitious abstractions are the ones that are in terms of
logical representations of domain concepts and relationships
and hide all the computational units from the users [Kord-
jamshidi et al., 2018]. This is different from most commonly
used frameworks such as current deep learning tools such as
pyTorch1 and TensorFlow2. In the current tools, users have
access to high-level functions to design deep learning archi-
tectures in terms of linear and nonlinear layers from which
automatic derivations are taken to optimize the parameters.

1https://pytorch.org
2https://www.tensorflow.org

However, the connection between the application and the de-
signed architectures is not a part of the program, and it is
only known by the programmer who knows both the applica-
tion and the design language for machine learning. Declara-
tive learning-based programming [Kordjamshidi et al., 2018;
Kordjamshidi et al., 2015] argues for abstractions that are
based on the conceptual problem specification rather than the
underlying computational units. On a related issue, most of
the existing tools do not support expressing and using the
structure of the data directly. There is no principled way for
expressing the complex relational data and connecting it to
the learning architectures. Dealing with the structure and fig-
uring out how to use it in learning is left to the user.

Though the recent graph networks [Zhou et al., 2018] are
capable of representing graph structures, their graphs specify
complicated data instances rather than a high -level specifica-
tion of the problem domain. There is no way to express and
use first-order knowledge and the relational schema of the
data explicitly. There is a gap between the abstraction level
that is used in applications and machine learning models. The
question that we address here is How to bridge the gap be-
tween domain knowledge and learning-based programs?

The main idea of this paper is to use domain ontologies
as representative of the application domain in the learning-
based programs. Ontologies are a rich source of the do-
main and world knowledge. They are powerful in represent-
ing concepts and their relationships for an application. They
are a means to express first-order knowledge about groups
of object and types of relationships which is impossible to
express in data instances. Here, we assume the ontologies
contain the domain information that specifies the applica-
tion’s central concepts, relationships and the constraints over
them. Therefore, we generate learning-based programs by au-
tomatic compilation of the ontology of the domain. We bridge
between the two levels of abstractions in the application do-
main and machine learning in a modular way. We address
the problem of bridging the ontologies to learning-based pro-
gramming by proposing an end-to-end pipeline with the fol-
lowing components,

1. A schema representation of the domain concepts and
their relationships is generated automatically from the
standard ontology languages (here web ontology lan-



ontology graph

...
<owl:Class rdf:ID="people"> 

<rdfs:subClassOf> 
<owl:Class rdf:ID="entity” /> 

</rdfs:subClassOf> 
<owl:disjointWith rdf:resource="#organization" /> 
<owl:disjointWith rdf:resource="#location" />
<owl:disjointWith rdf:resource="#other" />
<owl:disjointWith rdf:resource="#O" />

</owl:Class>
...
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Figure 1: We propose a pipeline from ontology to learning-based program. It consists of three explicit steps: 1. Ontology Declaration, 2.
Model Declaration, and 3. Explicit Inference.

guage OWL3) and form the backbone graph of the target
learning-based program.

2. The generated graph concepts are associated with data
and learning models (we call them concept learners),

3. The learning targets and loss functions are derived auto-
matically.

4. The final predictions are made based on the concept
learners and global ontological constraints.

To showcase the effectiveness of the current framework
and the components of our pipeline, we use the entity-
mention-relation extraction (EMR) task and validate on
CoNLL data4. The task is as follows: given an input text
such as ”Washington works for Associated Press.”, find a
model that is able to extract the semantic entity types (e.g.,
people, organizations, and locations) as well as relations be-
tween them (e.g., works for, lives in), and generate the fol-
lowing labels for entities: [Washington]people works for [As-
sociated Press]organization, and find out the relationship be-
tween Washington and Associated Press is worksFor.

2 Main Components
The proposed pipeline includes three major components: the
ontology declaration, the model declaration, and explicit in-
ference. Figure 1 shows this pipeline. Ontology declaration,

3https://www.w3.org/TR/owl-overview/
4https://www.clips.uantwerpen.be/conll2003/ner/

shown as step 1 in the figure, provides the domain concepts
and the knowledge about the relationships between these con-
cepts. We take a domain ontology in the standard ontology
language OWL as the input to our pipeline. The top-left
snippet of code is the OWL declaration of “people”, consid-
ered a subclass of “entity”, and is disjoint with organization,
location, other (entities), and non-entities. The ontology is
compiled automatically and generates the partial body of the
learning based program as a graph. Some parts of the graph is
shown on the bottom-left of Figure 1. The graph is consist of
concepts, connections, and properties. Connections indicate
the way concepts relate to each other. Properties are named
values attached to concepts, which will later be provided by
sensors and learners. The partial program can be completed
by the programmer with the model declaration. Model dec-
laration is to assign sensors and learners to properties of on-
tological concepts to form a complete program. Sensors are
snippets of the program to read from the dataset, while learn-
ers are parameterized computation modules. Explicit infer-
ence optimizes the prediction taking into account the con-
straints extracted from the ontology as examples shown on
top-right of Figure 1. Explicit inference makes the final pre-
diction consistent with the domain knowledge.

With the complete learning-based program compiled, as-
signed, and optimized, the user can interactively train the pa-
rameters, test the performance, or just do inference over spe-
cific samples. In fact, the ontology plays the role of the skele-
ton of the learning-based program in many ways. Firstly, it



declares the domain itself and forms the initial body of the
program. Secondly, it allows the learning models to be built
upon its properties, making the source and destination of each
learner clear and connect those tightly to the ontological con-
cepts. Thirdly, it serves as a source of global knowledge
based on which we can make joint inference for prediction
of concepts and relationships. These three components are
detailed below.

2.1 Ontology declaration
The structure of the domain knowledge is represented via on-
tologies including concepts, relationships, and properties. In
this work we assume the ontology of the domain is given
in OWL language which is among the most popular lan-
guages to express ontologies. We compile a given ontology
from OWL format into a directed graph G (V,E), where the
nodes are denoted by V = {v1, v2, · · · , vn} and the edges by
E = {e = (vi, vj)|vi, vj ∈ V }.

All domain concepts and relationships are represented in
nodes and the edges are related to a predefined set of seman-
tics about the way the concepts are connected to each other.
This includes “is-a”, “not-a”, and “has-a” edges. The “is-
a” connection represents inheritance between two concepts,
which is the most common connection in ontology modeling.
The implied semantic is that the validity of the source concept
indicates the validity of the destination concept. The “has-a”
connection represents that the source concept is composed of
the destination concept(s). The semantic of “has-a” is that the
validity of the source concept indicates the validity of all des-
tination concepts at the same time. For example, in “people
‘work for’ organization”, where “work for” is a concept com-
posed of “people” and “organization”. We call the concepts
like “work for” the composed concepts in our graph. They
can be defined by “has-a” connection to the components. As
shown in Figure 1, the composed concept “work for” is con-
nected to the first argument “people” and the second one “or-
ganization”, with two “has-a” connections.

Each concept is described with a collection of named prop-
erties Pi = {name1 : p1, name2 : p2, · · · }.

1 from regr import Concept
2 # ...
3 people = Concept(name='people')
4 people.is_a(entity)
5 people.not_a(organization)
6 # ...
7 work_for = Concept(name='work_for')
8 work_for.is_a(pair)
9 work_for.has_a(people, organization)

2.2 Model declaration
Model declarations are made manually by adding sensors and
learners to the partial learning-based program. It should be
noticed that the partial learning-based program derived from
the ontology, compiled from OWL or written as the graph,
does not contain any sensor or learner to interact with data
or computations. Sensors are program components that inter-
act with the data source. Sensors read plain text, structured
data, or features extracted by external pre-processing mod-
ules. They provide access to the data as well as the ground-
truth labels. Learners are computational components that pro-

duce representations of known properties or predict the un-
known ones. Learners usually come with parameters, and it
is where the learning of the program will take place. The
purpose of model declarations is threefold: connection to the
input, connection to the computational units, and specifying
the output. Firstly, it defines how data will be populated into
the graph by connecting sensors to the properties of concepts
(See the below Python snippet).

1 from regr.sensor import *
2 sentence['raw'] = ReaderSensor('sentence')
3 people['label'] = ReaderSensor('Peop')

We connect the property of an individual concept to a data
sensor. At run-time, when the specific property is queried,
the program collects data, usually in batches, from the corre-
sponding sensor. It can also be the ground truth labels (i.e. ,
target values) that are used to train the learners.

Secondly, it defines how the computational modules will
be connected to the concept properties. Learners with param-
eters, like neural network modules, are assigned to properties
of concepts. The learners play the role of unknown transfor-
mations between properties. At run-time, when the specific
output property is queried, the graph invokes the module to
make a prediction.

1 from regr.sensor import *
2 phrase['w2v'] = EmbedderLearner('phrase',

embedding_dim, sentence['raw'])↪→
3 entity['emb'] = RNNLearner(embedding_dim,

phrase['w2v'])↪→
4 people['label'] = LogisticRegressionLearner(

embedding_dim * 2, entity['emb']))↪→

The above snippet assigned a learner of “Embed-
derLearner” followed by a bidirectional gated recurrent
unit (GRU) “RNNLearner” to the “emb” property of con-
cept “entity”. The “emb” property will be further used by a
classifier “LogisticRegressionLearner” with log scale output,
which is further assigned to “label” property of “people”. Pre-
diction will be made by the classifier based on its parameters.
This learner can update its parameters in training process.

Lastly and most importantly, the learning target, a.k.a. the
loss function of the learning-based program can be derived
from the model declaration directly. We extract the set of the
properties that are assigned to multiple sensors or learners at
the same time, namely the properties of interest (POI). The
loss function is defined automatically by checking the consis-
tency of different sensor/learner assignments of properties in
POI. One can assign a ground-truth sensor to a concept’s la-
bel property, and then another prediction learner to the same
property. The loss function is derived from the difference of
the output of ground-truth sensor and the prediction learner.
The parameters of the learners are trained by optimizing the
derived loss with gradient descent algorithms. In other words,
the assigned sensors provide data and ground truth labels to
compute the loss, and the error will be back propagated to all
the learners including classifiers that make prediction directly,
or non-linear transformations that produce intermediate rep-
resentations.



2.3 Explicit inference
Though the modules are trained to produce consistent predic-
tions, this consistency cannot be guaranteed by the learners
themselves. Learners may share input features but predict la-
bels independently. The global consistency of the outputs is
not guaranteed when the structural information over those is
not used explicitly. To enforce the consistency of predictions,
and more importantly to exploit the knowledge expressed in
the input ontology, we introduce the explicit inference based
on the ontological constraints.

We convert the ontological constraints over the concept
sensors and learners into an integer linear programming (ILP)
problem and maximize the overall confidence of the truth
values of all concepts while satisfying the global con-
straints [Chang et al., 2012; Roth and Yih, 2007]. We de-
rive constraints from the input ontology automatically. In
our EMR example, two types of constraints are considered:
the disjoint constraints and the composed-of constraints. The
disjoint constraints, interpreted from “not-a” connections be-
tween concepts, consider the mutual exclusivity of assigning
concept labels to nodes. For example, an “entity” could not
be a “people” and an “organization” at the same time. In
EMR problem we assume at maximum one type of relation-
ship can hold between two entities. The composed-of con-
straints, interpreted from “has-a” connections, constrain do-
main relationships and their arguments, stating that if a rela-
tionship, for example “work for”, holds between two entities
then the type of the arguments should satisfy that the first en-
tity is “people” and the second is “organization”. By solving
the generated ILP problem, we can obtain a set of predictions
that considers the structure of the data and the knowledge that
is expressed in the domain ontology.

Experiments. In EMR task, with our handcrafted simple
OWL ontology, we combined simple learners with raw fea-
tures. We employ 50 dimensional word2vec feature [Pen-
nington et al., 2014], POS-tags, and dependency parsing
roles5 for words representations. We use a 5-gram and bi-
directional gated recurrent units layer are used for sequence
encoding. Each individual concept are predicted based on the
encoding with a logistic regression. For pairs, we first create
a 48-dimensional compact representation based on the encod-
ing. We concatenate the representation of two words in a pair
for the representation of the pair. We also encoded the dis-
tance between two words in the pair in log scale. When the
word for the first argument comes after that for the second, we
assign a negative distance. We further added the dependency
relationship and lowest common ancestor as the pair features.
Composed concepts are predicted based on pair features by
local logistic regression learners. Inference is done globally
on the top of all logistic regression prediction results of both
single and composed concepts.

Table 1 shows the results of EMR example. We did
not fit our model parameters specifically and used only a
few linguistic features. Our goal is to demonstrate our lan-
guage for designing models, features, and global inference,
rather than to compete with the state-of-the-art of EMR task.

5Pos-tags and dependency parsing are extracted by spaCy: https:
//spacy.io/.

Table 1: EMR experimental results.

(-) (+)

location 0.8583 0.8622
organization 0.7541 0.7537

other 0.6639 0.6680
people 0.9145 0.9165

kill 0.5383 0.5418
live-in 0.4582 0.4670

located-in 0.4793 0.4816
orgbase-on 0.4499 0.4449

work-for 0.4420 0.4260
(-) Learner prediction without inference
(+) Global output with inference

We see significant evidence that global inference improves
the results of independent learners, which is consistent with
the previous results on this task [Kordjamshidi et al., 2015;
Zhang et al., 2016]. Most of the results are improved af-
ter inference. However, “organization” and its related com-
posed concepts, namely “orgbase-on” and “work-for”, are
negatively affected after inference.

Global inference can be helpful in multiple ways. Firstly,
global inference eliminates the false positives and improves
precision by disjoint constraints, which is indicated by “not-
a” connections in the graph. Second, though in our current
setting the baseline prediction is weak, it still gives a more
consistent global result by resolving conflicts in the predic-
tions. Thirdly, the inference balances between weak and
strong learners in the model. It tends to give more improve-
ment in weak learners than degeneration on strong ones. In
practice, the weak performance of the learners could be due
to the difficult nature of the concepts. It means it is difficult to
improve their performance from a single learner. For exam-
ple, learning the composed concept (e.g. “work for”) is more
difficult than those of simple concepts (e.g. “people”). Global
inference balances between these learners. It improves the re-
sults of difficult concepts (from weak learners).

3 Related Works
The idea of learning-based programming is proposed
in [Roth, 2005] for the first time and followed up in [Riz-
zolo and Roth, 2010; Rizzolo, 2011] by developing Learning-
based Java programming paradigm which was designed to
support machine learning plus using global logical con-
straints for making the inference. A declarative version,
Saul, that supported relational and graph-based data mod-
eling and structured perceptron-based learning was pro-
posed in [Kordjamshidi et al., 2015] and its applicability
was shown in various domains [Kordjamshidi et al., 2016;
Kordjamshidi et al., 2017]. Saul is based on Scala and used
Java as backend. This survey [Kordjamshidi et al., 2018]
shows the context of Declarative learning-based program-
ming with respect to statistical relational learning, proba-
bilistic programming, probabilistic logical programming, and
other related paradigms [Domingos and Richardson, 2004;
De Raedt et al., 2007]. This paper is following the same line

https://spacy.io/
https://spacy.io/


of work and takes a step towards declarative learning-based
programming by exploiting ontologies of the domain that are
available in standard ontology languages.

Sophisticated domain knowledge is required to build
learning-based programs to interact with multi-modal data
in complex application setting like social media [Guo et al.,
2016]. Ontology provides structural knowledge in an ap-
plication domain that is needed in machine learning mod-
els. They have been used in machine learning as a source
of background knowledge particularly in biomedical applica-
tions for the simpler case of taxonomies [Min et al., 2016;
Magumba et al., 2018]. Deep learning models, exploit the
ontology as a guidance for attention in this work [Raaijmak-
ers and Brewster, 2018]. Ontologies have been also used in
[Wang et al., 2016] to guide the architecture design of the
deep restricted Boltzmann machines (DRBM), as well as to
assist in their training and validation processes. However, in
all of the previous work, to our knowledge, the specific onto-
logical information has been hard encoded into the learning
models per case. There is no generic framework to enable the
usage of arbitrary ontologies in machine learning in a princi-
pled way.

Our pipeline is not intentionally designed to be a computa-
tional toolbox. We connect the computations to libraries like
PyTorch, TensorFlow, and/or MXNet6. The the learner in-
terface provides the flexibility to use various backends. The
option is left to the machine learning programmers allow-
ing them to provide whatever underlining computation to the
properties of the concepts. A set of other tools with an or-
thogonal functionality are the tools that are used to process
raw data and provide some higher level libraries that help us
to put raw data in some data structures, in our work we use
NLP tool in our showcase example. Particularly, we use Al-
lenNLP7 [Gardner et al., 2018] in this study. Basic building
blocks like sophisticated tools to extract language features,
common neural network layers, and optimizers, configurable
command-line usage, are provided out-of-box. However, the
proposed pipeline focuses on translating the knowledge im-
plied by ontology to links of the model, loss function, and
constraints in inference. This procedure usually needs to be
designed carefully with knowledge from both the application
domain as well as machine learning.

In contrast to the graph networks [Zhou et al., 2018] which
exploit the given graph structure of the instances, the ontolo-
gies represent higher level knowledge that can help in gen-
erating a graph per instance. Moreover, the ontology can
be used as a source of global constraints over the decisions
that are made over the data graphs. In the recent Graph-
Nets tool [Battaglia et al., 2018], they represent and predict
the nodes, edges, and properties (local and global) of graphs
in neural networks. Instance graphs are the input to neu-
ral networks in GraphNets formulations. However, our pro-
posed pipeline does not take instance graphs as input to the
network. A network is generated, trained, and constrained,
based on ontology graphs. In other words, the GraphNets
take instance graphs as data while our pipeline takes ontol-

6https://mxnet.apache.org/
7https://allennlp.org/

ogy graphs as the problem to be solved as well as the key to
solve it. As the ontology-based reasoning component, we ex-
ploit the off-the-shelf linear programming optimization tools.
However, there is a recent line of work to train deep networks
that can replace the ontological reasoning [Hohenecker and
Lukasiewicz, 2018]. This is an orthogonal direction. Our
future goal is to exploit heterogeneous reasoning components
such as logical, probabilistic inference or constraint optimiza-
tion models and plug them into the procedure of training
rather than replacing all existing formalisms with deep neural
networks.

4 Conclusion
Ontologies are a rich source of domain knowledge that can be
used in machine learning models in several ways. The main
idea of this paper is to investigate the compilation of the exist-
ing ontologies expressed in standard languages such as OWL
into learning based programs. We generate a python program
that declares a relational graph and connects the concepts and
relationships in the ontologies with sensors and learners. The
training targets are inferred automatically and used in loss
functions. For the prediction of the target values including
entity and relationship labels the learners make the best pre-
dictions that are consistent with ontological constraints. The
proposed pipeline bridges the gap between the application
domain described by ontologies and the learning-based pro-
grams.
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