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Abstract
We propose a differentiable framework for logic
program inference as a step toward realizing flex-
ible and scalable logical inference. The basic idea
is to replace symbolic search appearing in logical
inference by the minimization of a cost function J
in a continuous space. J is made up of matrix (ten-
sor), Frobenius norm and non-linear functions just
like neural networks and specifically designed for
each task (relation abduction, answer set computa-
tion, etc) in such a way that J(X)≥ 0 and J(X) = 0
holds if-and-only-if X is a 0-1 tensor representing a
solution for the task. We compute the minimizer X
of J giving J(X) = 0 by gradient descent or New-
ton’s method. Using artificial data and real data, we
empirically show the potential of our approach by a
variety of tasks including abduction, random SAT,
rule refinement and probabilistic modeling based
on answer set (supported model) sampling.

1 Introduction
We propose a differentiable framework for logic program in-
ference as a step toward realizing flexible and scalable logical
inference. The basic idea is to replace symbolic search by the
minimization of a cost function J in a continuous space. We
choose J specifically to each task and perform from abduction
to probabilistic inference.

Consider the case of abduction where the task is to abduce
a binary relation r2(Y,Z) satisfying r3(X ,Z)⇔∃Y r1(X ,Y )∧
r2(Y,Z) for given r3(X ,Z) and r1(X ,Y )1. J is chosen as

Jabd(X)

=
1
2
{∥R3−min1(R1X)∥2

F + ℓ · ∥X⊙ (1−X)∥2
F}. (1)

Here R1 and R3 are adjacency matrices (i.e. 0-1 matri-
ces) representing r1(X ,Y ) and r3(X ,Z) respectively. min1(x)
is a non-linear function defined by min1(x) = min(x,1)(the
lesser of x and 1)2, ⊙ denotes element-wise product, ∥ · ∥F

1We follow Prolog convention and logical variables begin with
upper case letters.

2For a matrix A, min1(A) indicates element-wise application of
min1(x) to A.

Frobenius norm and 1 a matrix of all ones. By construc-
tion, Jabd(X) = 0 if-and-only-if X is a 0-1 matrix3 satisfy-
ing R3 = min1(R1X). The latter implies X is an adjacency
matrix representing a binary relation r2(Y,Z) s.t. r3(X ,Z)⇔
∃Y r1(X ,Y )∧ r2(Y,Z).

Note that our abductive setting of solving R3 =min1(R1X)
is broad and includes SAT problem as a special case where
R3 = 1 is a column vector with every element being one, R1 =
QCNF is a 0-1 matrix encoding clauses and X is a 0-1 column
vector representing a truth-assignment (see Subsection 3.3).

Also the problem of finding supported models (an-
swer sets)[Gelfond and Lifshcitz, 1988; Marek and
V.S.Subrahmanian, 1992] is similarly formulated as a cost
minimization problem of some J derived from normal logic
programs.

In general, in our approach, J is constructed in such a way
that J(X) ≥ 0 and J(X) = 0 holds if-and-only-if X is a 0-1
tensor (multi-linear function, a generalization of vector and
matrix) representing a solution such as relations and answer
sets. Logical inference is therefore achieved either by min-
imizing J to zero or by root finding of J. We carry out the
former by gradient descent (GD) and the latter by Newton’s
method. On the numerical side however, it is difficult and
time-consuming to reduce J to completely zero. We there-
fore incorporate a “jumping to a solution” strategy which
means while updating X by GD or by Newton’s method, we
threshold X into a 0-1 tensor using an appropriate threshold-
ing value to see if the resulting X constitutes a solution. Al-
though combining continuous relaxation of symbolic model
search with thresholding is somewhat ad hoc, it works and
opens a new way of logical inference using tensors.

One notable thing with J is that it enables random sam-
pling of solutions (target relations and/or models). Con-
sider for example the sampling of answer sets, or more
specifically the sampling of supported models of a normal
logic program DB[Gelfond and Lifshcitz, 1988; Marek and
V.S.Subrahmanian, 1992]. Usually DB has multiple sup-
ported models and which model is reached by minimizing J
to zero depends on the initialization of X in GD or Newton’s
method. By uniformly sampling an initial point from [0,1]n,
we can expect to perform (semi) uniform sampling of sup-

3∥X⊙(1−X)∥2
F =∑i j X2

i j(1−Xi j)
2 = 0 implies Xi j(1−Xi j) =

0 for all i, j where Xi j denotes the (i, j) element of X.



ported models as exemplified later by our experiments. Also
by introducing a dynamic cost function that stochastically
changes as sampling proceeds, “distribution-aware” sampling
is realized and applied to probabilistic inference for supported
models.

Performing logical inference or more generally symbolic
reasoning in a continuous space is a rather old idea but the
recent explosion of deep learning technologies reignites in-
terest in relating symbolic approaches to neural networks
[Widdows and Cohen, 2015; Rocktäschel and Riedel, 2017;
Cohen et al., 2017; Kazemi and Poole, 2018; Manhaeve et
al., 2018]. Our approach has a lot in common with these dif-
ferentiable approaches in that we exploit the flexibility and
scalability of linear algebraic operations combined with non-
linear activity functions supported by modern computer tech-
nologies such as many cores and GPGPUs. We however
differ in that we entirely reformulate logical inference as a
simple cost minimization problem and are focused on logi-
cal/probabilistic inference, not on raw data processing such
as image data and text data.

In what follows, after a preliminary section, we show how
to perform exact abduction in a continuous space in Section 3.
Then we apply this technique to random SAT problem and
real data, i.e. rule discovery from knowledge graphs. Then
we move on to the problem of sampling supported models
(answer sets) [Gelfond and Lifshcitz, 1988; Baral et al., 2009;
Eiter et al., 2009] with constraints in Section 4 and apply it
to probabilistic modeling by distribution-aware sampling in
Section 5. The reader is supposed to be familiar with the ba-
sics of logic programming. Due to space limitations, descrip-
tion tends to be sketchy and example-based for intuitiveness.

2 Preliminaries
2.1 Tensorized semantics
To perform logical inference in terms of vectors and matrices,
we adopt a tensorized semantics introduced in [Sato, 2017].
For a syntactic object A, we use [[A]] to denote its interpre-
tation (entities, relations, truth values). We assume a finite
Herbrand domain {e1, . . . ,en} and each entity ei (1 ≤ i ≤ n)
is represented by a one-hot column vector ei = [0..,1,0..]T
which is a zero vector except the i-th element being 1. An
m-ary predicate p/m is identified as an m-ary multi-linear
mapping in the n-dimensional vector space and a proposition
(ground atom) p(ei1 , . . . ,eim) takes a truth value 1 when true
else 0, i.e, [[p(ei1 , . . . ,eim)]] ∈ {1,0}. Note a unary predicate
is computed by a dot product like [[p(ei)]] = (p • ei) using
a 0-1 vector p representing p. Likewise a binary predicate
is computed as [[r(ei,e j)]] = eT

i Re j = Ri j using a 0-1 ma-
trix R encoding r. Compound boolean formulas are induc-
tively computed by [[¬A]] = 1− [[A]], [[A∧B]] = [[A]] · [[B]] and
[[A∨B]] =min1([[A]]+[[B]]). Existential quantifiers are treated
by grounding them to disjunctions. So we have [[∃X p(X)]] =
min1([[p(e1)]] + · · ·+ [[p(en)]]). Fortunately however, often-
times this grounding process is eliminable in particular in the
case of existentially quantified conjunctions like

[[∃Y r1(X ,Y )∧ r2(Y,Z)]] = min1(∑
j

xT R1e jeT
j R2z)

= xT min1(R1R2)z (2)

where x and z are arbitrary entity vectors substituted for X
and Z respectively.

Let X be a matrix. We use |X| to denote the number of
nonzero elements of X. So when R is a 0-1 matrix repre-
senting a binary relation, |R| coincides with the size of the
relation.

2.2 Supported model and tensor equation
Let DB be a ground normal logic program and consider
clauses {h⇐ B1, . . . ,h⇐ Bk} about a ground atom h in DB.
B js are conjunctions of ground literals and can be empty
(empty body is considered true). Denote the boolean for-
mula h⇔ B1∨·· ·∨Bk by iff(h) and define iff(DB) = {iff(h) |
h occurs in DB}. iff(DB) is said to be a completion form of
DB.

A model of iff(DB), i.e., a truth assignment making every
iff(h) ∈ iff(DB) true is called a supported model of DB[Gel-
fond and Lifshcitz, 1988; Baral et al., 2009; Eiter et al.,
2009]. Supported models constitute a super class of stable
models (answer sets) and when DB is tight, i.e. no looping
dependency through positive atoms in DB, supported models
and stable models coincide. In this paper, we assume pro-
grams are tight. When DB is non-ground, we always treat it
as the set of all ground instantiations of the clauses in DB.

Now look at non-ground Datalog programs[Kakas et al.,
1992; Eiter et al., 1997; Gottlob et al., 2010]. We show
how tensor equations are derived from their supported mod-
els. Although more complex classes are possible to deal
with, we concentrate on a simple class C of DB contain-
ing only binary predicates such that each clause of the form
r0(X0,Xm) ⇐ r1(X0,X1) ∧ ·· · ∧ rm(Xm−1,Xm). We further-
more assume that when DB is recursive, clauses have only
one recursive goal in their clause body.

The following is a non-ground Datalog program (in the
completion form) in C which takes the transitive closure
r2(X ,Y ) of a base relation r1(X ,Y ).

r2(X ,Z) ⇔ r1(X ,Z)∨∃Y (r1(X ,Y )∧ r2(Y,Z)) (3)

In every supported model, both sides of (3) denote the same
truth value for any instantiations of X ,Z. Hence we have

[[r2(X ,Z)]] = [[r1(X ,Z)∨∃Y (r1(X ,Y )∧ r2(Y,Z))]].

By applying the interpretation mapping (2) to ∃Y (r1(X ,Y )∧
r2(Y,Z)), we obtain a matrix equation

R2 = min1(R1 +R1R2) (4)

where R1 and R2 are 0-1 matrices respectively encoding
r1(X ,Z) and r2(X ,Z) in a supported model. Since the deriva-
tion from (3) to (4) can go the other way around, computing
supported models of (3) is equivalent to solving (4) using 0-
1 matrices. By generalization, we see that supported models
of a program in C are characterized as a solution of matrix
equation derived from it (proof omitted).

3 Abducing relations by cost minimization
In this section, we solve the abduction problem described in
the beginning of Section 1: given r3(X ,Z) and r1(X ,Y ), find
a binary relation r2(Y,Z) satisfying r3(X ,Z)⇔∃Y r1(X ,Y )∧



r2(Y,Z) by minimizing Jabd(X) = 1
2{∥R3−min1(R1X)∥2

F +

ℓ · ∥X⊙ (1−X)∥2
F} w.r.t. X to zero. Here R3 and R1 are

respectively 0-1 matrices representing r3(X ,Z) and r1(X ,Y ).

3.1 Jacobian
To tackle this problem, we first derive a Jacobian ∂Jabd/∂X4.
For a matrix A, write A≤1 to denote a 0-1 matrix defined

by (A≤1)i j =

{
1 if Ai j ≤ 1
0 otherwise . Then we can compute the

Jacobian as follows (derivation omitted).

Jabd
a = ∂Jabd/∂X

= RT
1 ((R1X)≤1⊙ (R1X−R3))

+ ℓ · (X⊙ (1−X)⊙ (1−2X)) (5)

Using this Jacobian, we update X by

Gradient descent: Xnew ← X−αJabd
a or (6)

Newton’s method: Xnew ← X− (Jabd/∥Jabd
a ∥2

F)J
abd
a . (7)

Here α in (6) is a learning rate. (7) is derived from the
first order Taylor polynomial of Jabd and obtained by solv-
ing Jabd +(Jabd

a •Xnew−X) = 05.
Below is an abduction algorithm to search for a 0-1 matrix

R2 representing r2(X ,Y ). It starts from an approximate so-
lution (line 3) and then iteratively reduces Jabd toward zero
while checking whether thresholding X gives an exact solu-
tion (line 5,6) in each iteration. We stop updating X when an
exact solution is obtained (line 7) or i reaches max itr.

Algorithm 1: Relation abduction by matrix

1 Input: 0-1 matrices R3(l×n), R1(l×m)

2 Output: 0-1 matrix R2(m×n) s.t. R3 = min1(R1R2)

3 X←minX ∥R3−R1X∥2
F +λ∥X∥2

F
4 for i← 1 to max itr do
5 R2← X>θ for some θ
6 error← |R3−min1(R1R2)|
7 if error = 0 then

break
8 Update X by (6) or by (7)

9 return R2

The initial value of X (line 3) that minimizes the r.h.s. is
given by X = (λ I+RT

1 R1)
−1(RT

1 R3) where I is an identity
matrix(derivation omitted). X>θ (line 5) denotes a 0-1 matrix

computed by thresholding like (X>θ )i j =

{
1 if Xi j > θ
0 otherwise .

The best θ that minimizes error is chosen by grid search be-
tween the minimum and maximum element of X divided into
50 steps.

4min1(x) is differentiable except at one point x = 1 and hence
∂Jabd/∂X is almost everywhere differentiable.

5For matrices A,B, (A•B) = ∑i j Ai jBi j .

3.2 Experiment with random relations
To see the performance of our cost minimization approach,
we conduct an experiment with relatively large relations, i.e.,
matrices6. Given n, we generate two (n× n) random 0-1
matrices R1 and Y s.t. an element is one with probabil-
ity p = 0.001 and compute R3 = min1(R1Y) as test data.
Then we run the Algorithm1 using Newton’s method (7) with
R3 and R1 as input to abduce R2 and measure an error =
|R3−min1(R1R2)|. max itr is set to 1,000. For n varying
from 1,000 to 10,000, we repeat this process five times and
abduce five solutions for R2 and compute averages of |R3|,
error and execution time. The result is summarized in Ta-
ble 1. Figures are averages over five trials. There “ini error”
is the error caused by an initial value of X (line 3) before
iteration and “final error” is the error by the returned R2.

According to Table 1, we have achieved zero error for ev-
ery n and have successfully obtained an exact R2 that makes
R3 = min1(R1R2) true. Execution time looks rather linear
w.r.t. n, which empirically supports the scalability of our ap-
proach. Note that the recursive case (4) of abducing R1 from
R2 = min1(R1 +R1R2) = min1(R1(I+R2)) is treated simi-
larly by setting R3← RT

2 , R1← (I+R2)
T and R2← RT

1 .

3.3 3-SAT
Here we briefly show how to apply our approach to SAT prob-
lem. Consider a boolean formula in CNF: (a∨b∨ c̄)∧(a∨ b̄).
We encode this CNF as a 0-1 matrix QCNF by separately en-
coding positive literals and negative literal as follows where
rows represent clauses.

QCNF =
a b c ā b̄ c̄[
1 1 0 0 0 1
1 0 0 0 1 0

]
As is obvious from this example, we can encode a SAT

problem with n variables and m clauses by an (m× 2n) 0-1
matrix QCNF . Let u be a 0-1 vector representing an assign-
ment to n variables (1:true,0:false). Then a model (solution)
of QCNF is represented by (2n× 1) 0-1 vector of the form
[u;1n − u] s.t. 1m = min1(QCNF [u;1n − u]). Here 1n is a
vector of ones with length n. [u;v] stands for a vertical con-
catenation of column vectors u and v. Thus, solving a SAT
problem is considered as a form of abduction that abduces u
satisfying 1m = min1(QCNF [u;1n−u]) for the given QCNF .

Write QCNF = [Q1 Q2] where Qi(i = 1,2) is an (m× n)
matrix and introduce a cost function Jsat and its Jacobian Jsat

a
as follows (derivation omitted).

Jsat = (1m •1m−min1(QCNF [u;1n−u]))
+ (ℓ/2) · ∥u⊙ (1n−u)∥2

F (8)

Jsat
a = (Q2−Q1)

T (Q1u+Q2(1n−u))≤1

+ ℓ · (u⊙ (1n−u)⊙ (1n−2u)) (9)

It is easily proved that Jsat = 0 if-and-only-if u is a 0-1 vec-
tor representing a satisfying assignment for the original SAT
problem.

6All experiments in this paper are carried out using GNU Oc-
tave 4.2.2 and Python 3.6.3 on a PC with Intel(R) Core(TM) i7-
3770@3.40GHz CPU, 28GB memory.



n 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

|R3| 1005.4 7985.2 27036.0 63582.0 125245.0 215527.0 343080.0 50777.0 730999.0 995653.0
ini error 32.8 226.2 285.0 297.0 182.0 116.4 56.6 39.7 17.3 10.0

final error 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
time(s) 2.6 73.8 661.8 1608.2 1920.0 1870.2 2300.6 2874.7 3306.7 4255.3

Table 1: Abducing relation R2 : R3 = min1(R1R2)

We preliminarily implement our approach as a SAT solver
named AbdSat using GNU Octave 4.2.2 and conduct a ran-
dom 3-SAT experiment comparing AbdSat and MapleL-
CMDistChronoBT(MapleBT for short here)[Heule et al.,
2018], the SAT Competition 2018 Main Track winner as fol-
lows. Given n, the number of boolean variables, we gener-
ate a satisfiable SAT instance by first randomly generating a
“hidden” assignment v over n variables, and then randomly
generating m clauses consisting of 3 literals satisfied by v.
We collect them as an (m× 2n) 0-1 matrix QCNF as a gen-
erated instance. We generate 100 such instances and we run
the Algorithm1 using Newton’s method (7) with the Jacobian
(9) where R3 = 1m, R1 = QCNF , R2 = [u;1n−u]. Also we
initialize u (line 3) appropriately using a random 0-1 vector.
Restart is allowed 100 times when failing to find a satisfy-
ing assignment. We repeat this process 10 times. Table 2
summarizes the average run time with std to solve all of 100
instances. On average, when n = 100, AbdSat runs 7 times
slower than MapleBT but when n = 500, it runs 40 times
faster than MapleBT (though implemented in Octave). Ta-
ble 2 suggests the potential of our approach to solution find-
ing for random 3-SAT problems.

(n,m) AbdSat MapleBT

(100,426) 39.4(13.6) 5.91(0.17)

(500,2130) 103.3(8.8) 4231.8(1465.3)

Table 2: Average run time(s) for solving 100 random 3-SAT in-
stances

3.4 Rule refinement for knowledge graph
Here we apply our relation abduction technique to refine rules
extracted from a knowledge graph FB15k. FB15k is a well-
known knowledge graph containing triples of the form (sub-
ject, relation, object) in RDF format for 1,345 binary relations
and 14,951 entities [Bordes et al., 2013]. Given two 0-1 ma-
trices R3 and R1 representing two known relations r1(X ,Y )
and r3(X ,Z) respectively in FB15k, it is possible to find a 0-1
matrix R2 representing a new relation r2(X ,Y ) which makes
r3(X ,Z)⇔ ∃Y r1(X ,Y )∧ r2(Y,Z) approximately true in two
steps. First compute X = (λ I+RT

1 R1)
−1(RT

1 R3) which min-
imizes ∥R3−R1X∥2

F + λ∥X∥2
F and then put R2 = X>θ for

some θ that makes error = |R3 −min1(R1R2)| minimum.

This way of new relation discovery is proposed in [Sato et
al., 2018] and shown to give new rules such as

language(X ,Z)⇐ genre(X ,Y )∧genre lang(Y,Z) (10)

which connects two existing relations, language/2 and
genre/2 in the film domain of FB15k, by a new abduced re-
lation genre lang/2. The limitation is that this approach only
provides approximation and there is no guarantee of exact ab-
duction. Here we apply our abduction technique to reduce
approximation error.

Let Rl , Rg and Rgl be matrices representing
language(X ,Z), genre(X ,Y ) and genre lang(Y,Z) re-
spectively. Put A = Rl and B = min1(RgRgl). To measure
the quality of extracted rules containing abduced relations,
we pretend that A, the l.h.s. in the rule, is predicted
by B, the r.h.s. in the rule and measure the quality in
terms of F-measure F(A,B) = 2|A ∩ B|/(|A|+ |B|)7 and
error = |A−B|.

Since Algorithm 1 contains the abduction procedure de-
scribed in [Sato et al., 2018] as its initial part as lines from
(line 3) to (line 6), it is expected to return better abduced re-
lations than those found by [Sato et al., 2018]. We ran Al-
gorithm 1 with Rl and Rg as input using Newton’s method
and have obtained an abduced relation Rgel . We then com-
pared the quality of the rule (10) between the one described
in [Sato et al., 2018] and the other containing Rgl returned
by Algorithm 1. We observed that while the former yields F-
measure = 0.654 and error = 1614, the latter rule found by Al-
gorithm 1 gives F-measure = 0.666 and error = 1498. That is,
F-measure increased by 1.2% and error decreased by 7.1%.
We observed similar improvement with other rules such as
nationality(X ,Z) ⇐ live in(X ,Y ) ∧ nationality live in(Y,Z)
discovered by relation abduction.

4 Probabilistic inference
4.1 Sampling supported models
In this section, we apply our cost minimization approach to a
relatively unexplored area of probabilistic modeling by prob-
abilistic normal logic programs. Our programs look like DB
shown in Figure 18. We assume DB consists of unit clauses

7We here consider A as a set {(i, j) | Ai j = 1} and use |A| as its
cardinality.

8This is a variant of ‘Friends & Smokers’ program from
ProbLog’s tutorial (https://dtai.cs.kuleuven.be/
problog/tutorial/basic/05 smokers.html).



labeled with probabilities and non-unit clauses without prob-
ability labels. To make matters simple, we also assume pred-
icates are unary or binary and clauses have at most one re-
cursive goal. Hereafter we focus on the ‘Friends & Non-
smokers’ program due to space limitations but generalization
is not difficult.

0.3 :: stress(X)
0.2 :: influences(X,Y)
smokes(X)⇐ stress(X)
smokes(X)⇐ friend(X ,Y )∧ influences(Y,X)∧¬smokes(Y )

Figure 1: Friends & Non-smokers program

Mathematically, DB is considered as a probabilistic pro-
gram specifying a probability distribution over its supported
models (distribution semantics [Sato, 1995]). Here we define
a distribution by a sampling process; first we sample DBg9, a
ground instantiation of DB, by sampling ground unit clauses
with probabilities specified by their labels together with all
ground instantiations of non-unit clauses in DB. Then we
sample uniformly one of the supported models of DBg. By
sampling repeatedly, we collect a set S of supported models
m and compute various probabilities P(A) of atoms A as a
ratio (empirical probability) |{m |m |= A,m ∈ S}|/|S|.

The point is that the latter sampling process can be carried
out in a vector space. Recall that the equivalence (completion
form):

smokes(X)

⇔ stress(X)∨
∃Y friend(X ,Y )∧ influences(Y,X)∧¬smokes(Y )

(11)

holds in any supported model of DB and vice versa[Gelfond
and Lifshcitz, 1988; Baral et al., 2009; Eiter et al., 2009].
Suppose there are n people. We rewrite the equivalence (11)
to a tensor equation (12) as explained in Section 2 by intro-
ducing tensors representing relations in DB, i.e., (n×1) vec-
tors Sm and St for representing unary predicates smokes(X)
and stress(X) respectively and (n×n) matrices Fr and In rep-
resenting binary predicates friend(X ,Y ) and influences(X ,Y )
respectively.

Sm = min1(St +(Fr⊙ IT
n )(1n−Sm)) (12)

Here Fr ⊙ IT
n stands for friend(X ,Y )∧ influences(Y,X) and

1n − Sm for ¬smokes(Y ). Since supported models of (11)
and solutions of (12) have a one-to-one correspondence when
stress/1, friend/2 and influences/2 are given, we can perform
various types of sampling via (12) with the help of a cost
function specifically designed for each purpose.

4.2 Posterior computation
We conduct a small experiment of posterior computation as a
proof of concept following [Nickles, 2018]. We assume there
are n= 4 people and a friend relation is given by { friend(1,2),

9We assume DBg has supported models.

friend(2,1), friend(2,4), friend(3,2), friend(4,2) }. Suppose
we have observed that smokes(2) = true but influences(4,2)
= false. Under this condition, we would like to com-
pute the posterior probability P(smokes(1) | smokes(2)),
P(smokes(3) | smokes(2)) and P(smokes(4) | smokes(2)) by
constrained sampling. So we introduce a cost function Jsamp:

Jsamp(Sm)

=
1
2
{∥Sm−min1(St +(Fr⊙ IT

n )(1n−Sm))∥2
F

+ℓ1 · ∥Sm⊙ (1n−Sm)∥2
F + ℓ2 · (Sm(2)−1)2} (13)

and perform the sampling of supported models satisfying the
constraint { smokes(2) = true, influences(4,2) = false} as fol-
lows. First sample a 0-1 (n×1) vector St where each element
is one with probability 0.3. Similarly sample a 0-1 (n× n)
matrix In using probability 0.2 and put In(4,2) = 0. After
having sampled St and In, sample Sm s.t. Jsamp(Sm) = 0 by
minimizing Jsamp to zero with random initialization as de-
scribed in the previous section. Put C = St +(Fr⊙ IT

n )(1n−
Sm). The Jacobian Jsamp

a = ∂Jsamp/∂Sm used to minimize
Jsamp is given by (derivation omitted)

Jsamp
a = (E+diag(C≤1)(Fr⊙ IT

n ))
T (Sm−min1(C))

+ ℓ1 ·Sm⊙ (1n−Sm)⊙ (1n−2Sm)

+ ℓ2 · (Sm(2)−1)I2. (14)

Here E is an n× n identity matrix, I2 is a zero vector except
I2(2) = 1. diag(v) is the diagonalization of a vector v defined

by diag(v)i j =

{
v(i) if i = j

0 otherwise .

Unfortunately sometimes sampling fails or returns a sup-
ported model not satisfying Sm(2) = 1. So we try sampling
105 times with max itr = 10, collect “correct models”, i.e.
those that satisfy Sm = 1 and compute the target posteriors
using sampled correct models. We run this process five times.
The result is summarized as follows. On average, sampling
is done in 41.2 seconds and we get 99,904 supported mod-
els including 38,842 correct ones. Inferred posteriors by the
correct sampled models are shown in Table 3 (figures are av-
erages over 5 runs) together with manually computed exact
posteriors (derivation omitted). Seeing it, we may say that
sampling by cost minimization fairly works well as long as
the current example is concerned.

P(· | smokes(2)) smokes(1) smokes(3) smokes(4)
inferred posterior 0.232 0.299 0.299

exact posterior 0.231 0.300 0.300

Table 3: Inferred and exact posteriors

4.3 Unconstrained sampling
Here we examine the scalability of our approach using the
‘Friends & Non-smokers’ program in Figure 1. We simply



sample supported models of the program for various n with-
out any constraint. We set max itr = 10, perform sampling
104 times and plot the execution time for each n up to 250.
We also apply a quadratic fit to the plotted data. The result is
shown in Figure 2. The fitting curve seems to reflect the fact
that the time complexity of computing Jsamp and its Jacobian
Jsamp

a is O(n2).
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Figure 2: Unconstrained sampling

5 Distribution-aware sampling
Now we deal with a more intricate problem of distribution-
aware sampling[Chakraborty et al., 2014; Nickles, 2018]. By
distribution-aware sampling, we mean the one to obtain a set
of samples whose empirical distribution best matches the ob-
served distribution of target random variables.

Suppose we have the ‘Friends & Non-smokers’ pro-
gram in Figure 1 and observed P(smokes(1)) = 0.2 and
P(smokes(2)) = 0.8 in a domain {1, . . . ,n}. Our task is
to sample a set of supported models by distribution-aware
sampling whose empirical distribution gives (approximately)
these target probabilities. We implement distribution-aware
sampling by cost minimization by using a cost function
Jdist(Sm):

Jdist(Sm) =
1
2
{∥Sm−min1(C)∥2

F + ℓ1 · ∥Sm⊙ (1−Sm)∥2
F

+ℓ2 · ∥tv ep− tv p∥2
F}. (15)

Here C = St +(Fr⊙ IT
n )(1n−Sm). Let tv be a list of target

variables, tv p their target probabilities and tv ep an approxi-
mation to the empirical distribution by a set ∆ of sampled Sms.
Then ℓ2 · ∥tv ep− tv p∥2

F is a penalty term to force tv ep ≈ tv p.
Let tv fq be a list of frequencies of target variables in ∆.

Suppose we are in the process of minimizing Jdist and cur-
rently |∆| = N. By an N + 1-th sample Sm, tv ep is updated
to (max(min(Sm v,1),0)+ tv fq)/(N +1) where Sm v is a sub-
vector of Sm for tv. Since tv ep depends on the sampled Sms,
the cost function Jdist stochastically changes during its mini-
mization unlike Jsamp.

We conduct an experiment of distribution-aware sampling
for target variables tv = [Sm(1) Sm(2)]T and their target prob-
abilities tv p = [0.2 0.8]T by minimizing Jdist for sampled
St and In using Algorithm 1 with necessary modifications
(not included in the paper). Experimental parameters are
n = 100, ℓ1 = 1, ℓ2 = 1000,max itr = 300. We try to sam-
ple Sm maximum 1,000 times until 50 models are sampled
(sometimes sampling fails). We then estimate the empirical
probability of tv using the sampled Sms.

We repeated sampling five times and estimated target prob-
abilities as empirical probabilities computed from the sam-
pled Sms. The result is shown in Table 4 (figures are aver-
ages). As seen from it, target probabilities are reasonably esti-
mated, which demonstrates the viability of our proposal, i.e.,
distribution-aware sampling by cost minimization for proba-
bilistic normal logic programs.

target var. Sm(1) Sm(2)
target prob. 0.200 0.800

estimated prob. 0.222 0.785
#sampled model 50.0 (all different)

Table 4: Distribution-aware sampling

6 Related Work
Concerning logic and tensor, Grefenstette reformulates quan-
tifier free first-order logic in tensor spaces[Grefenstette,
2013]. Tensorized first-order logic with full quantification is
proposed by Sato in [Sato, 2017]. Partial evaluation of logic
programs with matrix encoding is developed by Sakama et
al. [Sakama et al., 2018]. Abduction is one of the major
categories of symbolic logical inference and has been stud-
ied in logic programming in particular [Kakas et al., 1992;
Eiter et al., 1997; Gottlob et al., 2010]. A formulation of
abduction in vector spaces is proposed by Sato et al. and ap-
plied to rule discovery [Sato et al., 2018]. Probabilistic logic
programming (PLP) provides high-level probabilistic model-
ing by first-order logic [Raedt and Kimmig, 2015]. In the
context of PLP, our work is most closely related to [Nickles,
2018] where Nickles introduced a differential cost function
combined with discrete solution search for SAT/Answer set
programming. Our approach seems the first of PLP by sup-
ported models via matrix (tensor) equation in vector spaces.

7 Conclusion
We have proposed to perform logical inference in vector
spaces by minimizing a cost function, combined with thresh-
olding, designed for each task. We demonstrated the effec-
tiveness of our approach by several applications from rela-
tion abduction to random SAT, to rule discovery, to con-
strained sampling and distribution-aware sampling by prob-
abilistic normal logic programs.
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