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Abstract

We consider the problem of answering queries
about formulas of first-order logic based on back-
ground knowledge partially represented explicitly
as other formulas, and partially represented as ex-
amples independently drawn from a fixed prob-
ability distribution. PAC semantics, introduced
by Valiant, is one rigorous, general proposal for
learning to reason in formal languages: although
weaker than classical entailment, it allows for a
powerful model theoretic framework for answering
queries while requiring minimal assumptions about
the form of the distribution in question. To date,
however, the most significant limitation of that ap-
proach, and more generally most machine learning
approaches with robustness guarantees, is that the
logical language is ultimately essentially proposi-
tional, with finitely many atoms. Indeed, the the-
oretical findings on the learning of relational theo-
ries in such generality have been resoundingly neg-
ative. This is despite the fact that first-order logic is
widely argued to be most appropriate for represent-
ing human knowledge. In this work, we present
a new theoretical approach to robustly learning to
reason in first-order logic, and consider universally
quantified clauses over a countably infinite domain.
Our results exploit symmetries exhibited by con-
stants in the language, and generalize the notion
of implicit learnability to show how queries can
be computed against (implicitly) learned first-order
background knowledge.

1 Introduction

The tension between deduction and induction is perhaps the
most fundamental issue in areas such as philosophy, cognition
and artificial intelligence. The deduction camp concerns itself
with questions about the expressiveness of formal languages
for capturing knowledge about the world, together with proof
systems for reasoning from such knowledge bases. The learn-
ing camp attempts to generalize from examples about partial
descriptions about the world. In an influential paper, [Valiant,

2000] recognized that the challenge of learning should be in-
tegrated with deduction. In particular, he proposed a seman-
tics to capture the quality possessed by the output of (prob-
ably approximately correct) PAC-learning algorithms when
formulated in a logic. Although weaker than classical entail-
ment, it allows for a powerful model theoretic framework for
answering queries.

From the standpoint of learning an expressive logical
knowledge base and reasoning with it, most PAC results are
somewhat discouraging. For example, in agnostic learn-
ing [Kearns et al., 1994] where one does not require exam-
ples (drawn from an arbitrary distribution) to be fully con-
sistent with learned sentences, efficient algorithms for learn-
ing conjunctions would yield an efficient algorithm for PAC-
learning DNF (also over arbitrary distributions), which cur-
rent evidence suggests to be intractable [Daniely and Shalev-
Shwartz, 2016]. Thus, it is not surprising that when it comes
to first-order logic (FOL), very little work tackles the prob-
lem in a general manner. This is despite the fact that FOL is
widely argued to be most appropriate for representing human
knowledge (e.g., [McCarthy and Hayes, 1969; Moore, 1982;
Levesque and Lakemeyer, 2001]). For example, [Cohen and
Hirsh, 1994] consider the problem of the learnability of de-
scription logics with equality constraints. While description
logics are already restricted fragments of FOL in only allow-
ing unary and some binary predicates, it is shown that such
a fragment cannot be tractably learned, leading to the iden-
tification of syntactic restrictions for learning from positive
examples alone. Analogously, when it comes to the learning
of logic programs [Cohen and Page, 1995], which in princi-
ple may admit infinitely many terms, syntactic restrictions are
also typical [De Raedt and Džeroski, 1994].

In this work, we present new results on learning to rea-
son in FOL knowledge bases. In particular, we consider
the problem of answering queries about FOL formulas based
on background knowledge partially represented explicitly as
other formulas, and partially represented as examples inde-
pendently drawn from a fixed probability distribution. Our
results are based on a surprising observation made in [Juba,
2013] about the advantages of eschewing the explicit con-
struction of a hypothesis, leading to a paradigm of implicit
learnability. Not only does it enable a form of agnostic learn-
ing while circumventing known barriers, it also avoids the
design of an often restrictive and artificial choice for repre-



senting hypotheses. (See, for example, [Khardon and Roth,
1999], which is similar in spirit in allowing declarative back-
ground knowledge but only permits constant-width clauses.)
In particular, implicit learning allows such learning from
partially observed examples, which is commonplace when
knowledge bases and/or queries address entities and relations
not observed in the data used for learning.

That work was limited to the propositional setting, how-
ever. Here, we develop a first-order logical generalization.
Since reasoning in full FOL is undecidable we need to con-
sider a fragment, but the fragment we identify and are able to
learn and reason with is expressive and powerful. Consider
that standard databases correspond to a maximally consistent
and finite set of literals: every relevant atom is known to be
true and stored in the database, or known to be false, inferred
by (say) negation as failure. Our fragment corresponds to a
consistent but infinite set of ground clauses, not necessarily
maximal. To achieve the generalization, we revisit the PAC
semantics and exploit symmetries exhibited by constants in
the language. Moreover, the underlying language is general
in the sense that no restrictions are posed on clause length,
predicate arity, and other similar technical devices seen in
PAC results. We hope the simplicity of the framework is ap-
pealing to the readers and hope our results will renew interest
in learnability for expressive languages with quantificational
power.

We remark that our sole focus is in PAC-semantics ap-
proaches, but there are also other families of methods for uni-
fying statistical and logical representations, that fall under the
banner of statistical relational learning (SRL) (e.g., [Kersting
et al., 2011]). SRL includes widely used formalisms such as
Markov Logic Networks [Richardson and Domingos, 2006]
and frameworks such as Inductive Logic Programming [Mug-
gleton and De Raedt, 1994]. Generally speaking, there are
significant differences to PAC-semantics approaches, such as
in terms of the learning regime, the notion of correctness and
the underlying algorithmic machinery. For example, Markov
Logic Networks use approximate maximum-likelihood learn-
ing strategies to capture the distribution of the data, whereas
in PAC formulations, one considers an arbitrary unknown dis-
tribution over the data and studies the question of what for-
mulas are learnable whilst costing for the number of examples
needed to be sampled from that distribution. Of course, there
is much to be gained by attempting to integrate these com-
munities; see, for example, [Cohen and Page, 1995]. These
differences notwithstanding, the learning of logical theories
is usually restricted to finite-domain first-order logic, and so
it is essentially propositional, and in that regard, our setting is
significantly more challenging.

2 Logical Framework

Language: We let L be a first-order language with equal-
ity and relational symbols {P(x), . . . ,Q(x1, . . . , xk), . . .}, vari-
ables {x, y, z, . . .}, and a countably infinite set of rigid des-
ignators or names, say, the set of natural numbers N, serv-
ing as the domain of discourse for quantification. Well-
defined formulas are constructed using logical connectives

{¬,∨,∀,∧,∃,⊃}, as usual. Together with equality, names es-
sentially realize an infinitary version of the unique-name as-
sumption.1

The set of (ground) atoms is obtained as:2 ATOMS ={
P(a1, . . . , ak) | P is a predicate, ai ∈ N

}
. We sometimes refer

to elements of ATOMS as propositions, and ground formu-
las as propositional formulas. We will use p, q, e to denote
atoms, and α, β, φ, ψ to denote ground formulas.

Semantics: AL-model M is a {0, 1} assignment to the ele-
ments of ATOMS. Using |= to denote satisfaction, the seman-
tics for φ ∈ L is defined as usual inductively, but with equality
as identity: M |= (a = b) iff a and b are the same names, and
quantification understood substitutionally over all names in
N: M |= ∀xφ(x) iff M |= φ(a) for all a ∈ N. We say that φ
is valid iff for every L-model M, M |= φ. Let the set of all
models beM.

Representation: Like in standard FOL, reasoning over
the full fragment of L is undecidable. Interestingly, ow-
ing to a fixed, albeit countably infinite, domain of discourse,
the compactness property that holds for classical first-order
logic does not hold in general [Levesque, 1998]. For ex-
ample, {∃xP(x),¬P(1),¬P(2), . . .} is an unsatisfiable theory
for which every finite subset is indeed satisfiable. However,
as identified in [Belle, 2017], and earlier in [Lakemeyer and
Levesque, 2002], the case of disjunctive knowledge is more
manageable. In particular, we will be interested in learning
and reasoning with incomplete knowledge bases with dis-
junctive information [Belle, 2017]:

Definition 1: An acceptable equality is of the form x = a,
where x is any variable and a any name. Let e range over
formulas built from acceptable equalities and connectives
{¬,∨,∧}. Let c range over quantifier-free disjunctions of
(possibly non-ground) atoms. Let ∀φ mean the universal clo-
sure of φ. A formula of the form ∀(e ⊃ c) is called a ∀-clause.
A knowledge base (KB) ∆ is proper+ if it is a finite non-empty
set of ∀-clauses. The rank of ∆ is the maximum number of
variables mentioned in any ∀-clause in ∆.

This fragment is very expressive. Consider that standard
databases correspond to a maximally consistent and finite set
of literals: every relevant atom is known to be true and stored
in the database, or known to be false, inferred by (say) nega-
tion as failure. In contrast, such KBs correspond to a consis-
tent but infinite set of ground clauses, not necessarily maxi-
mal.

Grounding: A ground theory is obtained from ∆ by sub-
stituting variables with names. Suppose θ denotes a substitu-
tion. For any set of names C ⊆ N, we write θ ∈ C to mean

1Our language L is essentially equivalent to standard FOL
together a unique-name assumption for infinitely many con-
stants [Levesque, 1998, Definition 3].

In general, the unique-name assumption does not rule out captur-
ing uncertainty about the identity of objects; see [Giacomo et al.,
2011; Srivastava et al., 2014], for example.

2Because equality is treated separately, atoms and clauses do not
include equalities.



substitutions are only allowed wrt the names in C. Formally,
we define:

• GND(∆) = {cθ | ∀(e ⊃ c) ∈ ∆, θ ∈ N and |= eθ};

• For z ≥ 0, GND(∆, z) = {cθ | ∀(e ⊃ c) ∈ ∆, |= eθ, θ ∈ Z},
where Z is the set of names mentioned in ∆ plus z (arbi-
trary) new ones;

• For C ⊆ N, GND(∆,C) = {cθ | ∀(e ⊃ c) ∈ ∆, |= eθ, θ ∈
Z} where Z is the set of names mentioned in ∆ plus the
names in C;

• GND−(∆) = GND(∆, z) where z is the rank of ∆.

Reasoning: Unfortunately, arbitrary reasoning with such
KBs is also undecidable [Lakemeyer and Levesque, 2002,
Theorem 7]. Various proposals have appeared to consider that
problem: in [Lakemeyer and Levesque, 2002], for example, a
sound but incomplete evaluation-based semantics is studied.
In [Belle, 2017], it is instead shown that when the query is
limited to ground formulas, we can reduce first-order entail-
ment to propositional satisfiability:

Theorem 2: [Belle, 2017] Suppose ∆ is a proper+ KB, and
α is a ground formula. Then, ∆ |= α iff GND−(∆ ∧ ¬α) is
unsatisfiable.

Here, the RHS of the iff is a propositional formula, obtained
by a finite grounding, as defined above.

Example 3: Suppose ∆ = {∀x(Grad(x) ∨ Prof(x)),∀x(x ,
charles ⊃ Grad(x))} and the query is Grad(logan). Given that
the KB’s rank is 1, consider the grounding of the KB and the
negated query wrt {charles, logan, jean} (here jean is chosen
arbitrarily). It is indeed unsatisfiable.

It is worth noting that the proof here (and in other propos-
als with L-like languages [Levesque and Lakemeyer, 2001;
Lakemeyer and Levesque, 2002; Liu and Levesque, 2005])
is established by setting up a bijection between names to
show that all names other than those that appear in the finite
grounding in the RHS behave “identically,” and so for entail-
ment purposes, it suffices to consider a finite set consisting of
the constants already mentioned and a few extra ones. That
idea can be traced back to [Levesque, 1998] (reformulated
here for our purposes):

Theorem 4: [Levesque, 1998] Suppose α = ∀xφ(x) is a
∀-clause. (Its rank is 1.) Let C be the names mentioned in
GND(α, 1). Then for every a ∈ N, there is a b ∈ C such that
|= φ(a) iff |= φ(b).

The essence of Theorem 2 is to exploit this idea to show
(reformulated here for our purposes):

Lemma 5: [Belle, 2017] Suppose α is as above. If GND(α, 1)
is satisfiable, then so is GND(α, z) for z ≥ 1.

Thus, we can extend a model that satisfies GND(α, 1) to
one that satisfies GND(α), and so α itself. These observations
will now lead to an appealing account for implicit learnability
with proper+ KBs.

3 Generalizing PAC-Semantics
Inductive generalization (as opposed to deduction) inherently
has to cope with mistakes. Thus, the kind of knowledge pro-
duced by learning algorithms cannot hope to be valid in the
traditional (Tarskian) sense, except in extreme cases, such as
assuming we see every data point in a noise-free manner. The
PAC semantics was introduced by Valiant [2000] to capture
the quality possessed by the output of PAC-learning algo-
rithms when formulated in a logic. In the classical proposi-
tional formulation, we suppose a propositional language with
(say) n propositions, yielding a model theoretic space {0, 1}n.
We suppose that we observe examples independently drawn
from a distribution D over {0, 1}n. Then, suppose further that
these examples enable a learning algorithm to find a formula
φ. We cannot expect this formula to be valid in the traditional
sense, as PAC-learning does not guarantee that the rule holds
for every possible binding, only that φ so produced agrees
with probability 1 − ε wrt future examples drawn from the
same distribution. This motivates a weaker notion of validity:

Definition 6: [(1 − ε)-valid] Given a distribution D over
{0, 1}n, we say that a Boolean function F is (1 − ε)-valid if
Prx∈D[F(x) = 1] ≥ 1− ε. If ε = 0, we say F is perfectly valid.

Thus far, the PAC semantics and its application to the for-
malization of robust logic-based learning has been limited
to the propositional setting [Valiant, 2000; Michael, 2009;
Juba, 2013], that is, where the learning vocabulary is finitely
many atoms, and the background knowledge is essentially re-
stricted to a propositional formula.3 Generalizing that to the
FOL case has to address, among other things, what (1 − ε)-
validity would like, how FOL formulas could be found by al-
gorithms, and finally, how entailments can be computed. That
is precisely our goal for this paper.

We start by proposing an extension of the PAC semantics
for the infinitary structures constructed for L, namelyM. For
this, we will need to consider distributions onM, which are
defined as usual [Billingsley, 1995]: we take M to be the
sample space (of elementary events), define a σ-algebra M
to be a set of subsets of M, which represent a collection of
(not necessarily elementary) events, and a function Pr : M→
[0, 1], which is the probability measure.

We are now ready to define (1−ε)-validity as needed in the
PAC semantics.

Definition 7: Given a distribution Pr overM, we say a for-
mula φ ∈ L is (1 − ε)-valid iff Pr(~φ�) ≥ 1 − ε. If ε = 0,
then we say that φ is perfectly valid. Here, ~φ� for any closed
formula φ ∈ L denotes the set {M ∈ M | M |= φ} .

In practice, the most important use of the notion of valid-
ity is to check the entailment of a formula from a knowledge
base, and by extension, the reader may wonder how that car-
ries over from classical validity. As also observed in [Juba,
2013] (for the propositional case), the union bound allows

3Valiant [2000] uses a fragment of FOL for which proposition-
alization is guaranteed to yield a small propositional formula, and
only considers such a reduction to the propositional case.



classical reasoning to have a natural analogue in the PAC se-
mantics, shown below. Note that, as already mentioned, our
assumption henceforth is that knowledge bases are proper+,
and queries are ground formulas, both in the context of rea-
soning as well as learning.

Proposition 8: Let ψ1, . . . , ψk be ∀-clauses such that each ψi
is (1 − εi)-valid under a common distribution D for some εi ∈

[0, 1]. Suppose {ψ1, . . . , ψk} |= ϕ, for some ground formula ϕ.
Then ϕ is (1 − ε′)-valid under D for ε′ =

∑
i εi.

4 Partial Observability
The learning problem of interest here is to obtain knowledge
about the distribution D, which, of course, is not revealed di-
rectly, but in the form of a set of examples. The examples in
question are models independently drawn from D, and we are
then interested in knowing whether a query α is (1− ε)-valid.
Intuitively, background knowledge ∆ may be provided addi-
tionally and so the examples correspond to additional knowl-
edge that the agent learns. This additional knowledge is never
materialized in the form of L-formulas, but is left implicit, as
postulated first in [Juba, 2013].

When it comes to the examples themselves, however, we
certainly cannot expect the examples to reveal the full nature
of the world, and indeed, partial descriptions are common-
place in almost all applications [Michael, 2010]. In the case
of L, moreover, providing a full description may even be im-
possible in finite time. All of this motivates the following:

Definition 9: A partial model N maps ATOMS to {1, 0, ∗} .
We say N is consistent with a L-model M iff for all p ∈
ATOMS, if N[p] , ∗ then N[p] = M[p]. Let N be the set of
all partial models.

Essentially, our knowledge of D will be obtained from a set
of partial models that are the examples.

Definition 10: A mask is a function θ that maps L-models to
partial models, with the property that for any M ∈ M, θ(M)
is consistent with M. A masking process Θ is a mask-valued
random variable (i.e., a random function). We denote the dis-
tribution over partial models obtained by applying a masking
process Θ to a distribution D over L-models by Θ(D).

The definition of masking processes allows the hiding of
entries to depend on the underlying example from D. More-
over, as discussed in [Juba, 2013] (for the propositional case),
reasoning in PAC-Semantics from complete examples is triv-
ial, whereas the hiding of all entries by a masking process
means that the problem reduces to classical entailment. So,
we expect examples to be of a sort that is in between these
extremes. In particular, for the sake of tractable learning, we
must consider formulas that can be evaluated efficiently from
the partial models with high probability. This leads to a no-
tion of witnessing.

Definition 11: We define a propositional formula φ ∈ L to be
witnessed to evaluate to true or false in a partial assignment
N by induction as follows:

• an atom Q(~c) is witnessed to be true/false iff it is
true/false respectively in N;

• ¬φ is witnessed true/false iff φ is witnessed false/true
respectively;

• φ ∨ ψ is witnessed true iff either φ or ψ is, and it is wit-
nessed false iff both φ and ψ are witnessed false;

• φ ∧ ψ is witnessed true iff both φ and ψ are witnessed
true, and it is witnessed false iff either φ or ψ is witnessed
false;

• φ ⊃ ψ is witnessed true iff either φ is witnessed false or
ψ is witnessed true, and it is witnessed false iff both φ is
witnessed true and ψ is witnessed false.

We define a ∀-clause ∀~xφ(~x) to be witnessed true in a partial
model N for the set of names C if for every binding of ~x to
names ~c ∈ C, the resulting ground clause φ(~c) is witnessed
true in N.

It is the witnessing of ∀-clauses that, in essence, enables
the implicit learning of quantified generalizations. Let us
see how that works. Intuitively, from examples φ(~c1), . . . ,
one would like to generalize to ∀~xφ(~x), the latter being a
statement about infinitely many objects. But what criteria
would justify this generalization, outside of (say) witness-
ing infinitely many instances? Our result shows that, sur-
prisingly, it suffices to get finitely many examples, so as to
witness φ(~c1), . . . , φ(~ck) and yield universally quantified sen-
tences with high probability. This is possible because, via
Theorem 2, all the names not mentioned in the KB and the
query behave “identically.” Thus, provided we witness the
grounding of φ for a sufficient but finite set of constants, we
can treat the implicit KB as including ∀-clauses, as it yields
the same judgments on our queries.

Putting it all together, formally, in any given learning
epoch, let S be the class of queries we are interested in ask-
ing: that is, S is any finite set of ground formulas. Let C then
be all the names mentioned in S , the KB, and z extra new
ones chosen arbitrarily, where z is at least the rank of the KB.
If z = KB’s rank, then the rank of the implicit KB matches
that of the explicit KB; otherwise, it would be higher. So the
definition says that the witnessing of ∀~xφ(~x) happens when
φ(~c) is witnessed for all ~c ∈ C. We think this notion is par-
ticularly powerful, as it neither makes references to bindings
from the full set of names N (which is infinite), nor to not
observing negative instances. Note also that witnessing does
not require observing all atoms: a clause is witnessed to eval-
uate to true if some literal appearing in it is true in the partial
model. Thus, the ∀-clause witnessed may involve predicates
not explicitly appearing in the partial model.

Witnessed formulas correspond to the implicit KB. In order
to capture the inferences that the implicit KB permits, we will
use partial models to simplify complex formulas in the KB or
query. To that end, we define:

Definition 12: Given a partial model N and a propositional
formula φ, the restriction of φ under N, denoted φ|N , is re-
cursively defined: if φ is an atom witnessed in N, then φ|N
is the value that φ is witnessed to evaluate to under N; if



φ is an atom not set by N, then φ|N = φ; if φ = ¬ψ, then
φ|N = ¬(ψ|N); and if φ = α ∧ β, then φ|N = (α|N) ∧ (β|N).
(And analogously for Boolean connectives ∨ and ⊃ .) For a
partial model N and set of propositional formulas F, we let
F|N denote the set {φ|N : φ ∈ F}.

Notice that here we do not define restrictions for quantified
formulas, such as those appearning in the KB: while that is
possible it is not needed, as we will be leveraging Theorem 2
for reasoning.

5 Implicit Learnability
The central motivation here is learning to reason in FOL, and
as argued earlier, implicit learning circumvents the need for
an explicit hypothesis, especially since hypothesis fitting is
intractable, unless one severly restricts the hypothesis space.
So, learning is integrated tightly into the application using the
knowledge extracted from data. Our definitions in the previ-
ous sections establish the grounds for which a first-order im-
plict KB can be learned from finitely many finite-size exam-
ples, but also the grounds for deciding propositional entail-
ments of ∀-clauses specified explicitly – i.e., the background
knowledge. (Of course, reasoning is not yet tractable, but
simply decidable; we return to this point later). Overall, the
learning regime is presented in Algorithm 1, and its correct-
ness is justified in Theorem 13.

Algorithm 1 Reasoning with implicit learning

Input: Partial models N(1),N(2), . . . ,N(m), explicit KB ∆,
query α (a ground formula), number of names k at least
equal to ∆’s rank
Output: p̂ ∈ [0, 1] estimating α is p̂-valid (See Theo-
rem 13)
Initialize v← 0
for i = 1, . . . ,m do

for all k-tuples of names (c1, . . . , ck) from N(i) not ap-
pearing in ∆ ∧ ¬α do

if GND(∆ ∧ ¬α, {c1, . . . , ck})|N(i) is unsatisfiable then
Increment v and skip to the next i.

end if
end for

end for
Return v/m

Theorem 13: Let δ, γ ∈ (0, 1) and k ∈ N be given. Suppose
we have m partial models drawn i.i.d. from a common distri-
bution D masked by a masking process Θ, where m ≥ 1

2γ2 ln 2
δ
.

(Here, ln denotes the natural logarithm.) With probability at
least 1 − δ, Algorithm 1 returns a value p̂ s.t.

I if ∆ ⊃ α is at most p-valid, p̂ ≤ p + γ

II if there is a KB I such that

1. ∆ ∧ I |= α,
2. the rank of ∆ ∧ I is at most k, and
3. with probability at least p over partial models N ∈

Θ(D), there exists names c1, . . . , ck not appearing

in ∆ or α, such that every formula in I is witnessed
true in N for c1, . . . , ck together with the names ap-
pearing in ∆ and α

then p̂ ≥ p − γ.

Proof: Part I: p̂ ≤ p + γ if ∆ ⊃ α is at most p-valid. We
first note that when GND(∆ ∧ ¬α,C)|N(i) |= ⊥ for any set of
names C, since N(i) is consistent with the actual model M(i)

that produced it, GND(∆ ∧ ¬α,C)|M(i) |= ⊥ as well. Thus,
in this case, GND(∆ ∧ ¬α,C) is falsified by M(i). Since |C|
is at least the rank of ∆, it is easy to see that GND(∆ ∧ ¬α),
which is logically equivalent to ∆ ∧ ¬α, is falsifiable at M(i).
So, it must be that the negation of that theory (i.e., ∆ ⊃ α) is
satisfied at M(i).

Now, ∆ ⊃ α is by definition p-valid with respect to this
distribution on M(i) if the probability that ∆ ⊃ α is satisfied
by each M(i) is p. Moreover, it follows immediately from
Hoeffding’s inequality that for m ≥ 1

2γ2 ln 2
δ
, the probability

that the fraction of times ∆ ⊃ α is satisfied by M(i) (out of m)
exceeds p by more than γ is at most δ/2. Thus, p̂, which is at
most the fraction of times ∆ ⊃ α is actually satisfied by M(i),
likewise is at most p + γ with probability at least 1 − δ/2.
Part II: rate of witnessing an implicit KB lower bounds
p̂. Note that by the grounding trick (Theorem 2), ∆ ∧ I |= α
implies that for any set of names c1, . . . , ck not appearing in
∆ or α, GND(∆ ∧ I ∧ α, {c1, . . . , ck}) |= ⊥. Suppose that
I is witnessed true for c1, . . . , ck together with the names
in ∆ and α in N(i). We note that in the restricted formula
GND(∆ ∧ I ∧ ¬α, {c1, . . . , ck})|N(i) , the groundings of for-
mulas in I all simplify to 1 (true), and so GND(∆ ∧ I ∧
¬α, {c1, . . . , ck})|N(i) = GND(∆ ∧ ¬α, {c1, . . . , ck})|N(i) . Thus,
GND(∆ ∧ ¬α, {c1, . . . , ck})|N(i) |= ⊥, so v is incremented on
this iteration. Thus, indeed, p̂ = v/m is at least the fraction
of times out of m that I is witnessed true for some set of k
names. It again follows from Hoeffding’s inequality that for
m ≥ 1

2γ2 ln 2
δ
, this is at least p − γ with probability 1 − δ/2.

By a union bound, the two parts hold simultaneously with
probability at least 1 − δ, as needed.

In essence, the no-overestimation condition is a soundness
guarantee and the no-underestimation condition is a limited
completeness guarantee: in other words, if the query logically
follows from the explicit KB and examples then the algorithm
returns success with an appropriate p̂, and vice versa.

6 Tractable Reasoning

Algorithm 1 reduces reasoning with implicit learning to de-
ciding entailment. In order to obtain a tractable algorithm, we
generally need to restrict the reasoning task somehow. One
approach, taken in the previous work on propositional im-
plicit learning [Juba, 2013], is to “promise” that the query is
provable in some low-complexity fragment; for example, it is
provable by a small treelike resolution proof (where “small”
refers to the number of lines of the proof). Equivalently, we
give up on completeness, and only seek completeness with
respect to conclusions provable in low complexity in a given



fragment. In general, then, one obtains a running time guar-
antee that is parameterized by the size of the proof of the
query. We can take a similar approach here, by using an
algorithm for deciding entailment that is efficient when pa-
rameterized in such terms. In general, what is needed is a
fragment for which we can decide the existence of proofs ef-
ficiently, and that is “restriction-closed,” meaning that for any
partial model N, if we consider the restriction of each line of
the proof, we obtain a proof in the same fragment. Most frag-
ments we might consider, including specifically treelike or
bounded-width resolution, are restriction-closed. (See [Juba,
2012] for details.)

We will motivate an entirely new strategy here, which
offers a semantic perspective to the proof-theoretic view
in [Juba, 2013]. One classically sound model-theoretic
approach to constraining propositional reasoning is to limit
the power of the reasoner, as represented, for example,
by the work on tautological entailment [Levesque, 1984].
More recently, [Liu et al., 2004] suggest a simple evaluation
scheme for proper+ KBs that gradually increases the power
of the reasoner: level 0 is standard database lookup together
with unit propagation, level 1 allows for one case split in
a clause, level 2 allows two case splits, and so on. The
formal intuition is as follows: suppose s is a set of ground
clauses and φ is a ground query, and let us say its a clause
for simplicity. Let U(s) denote the the closure of s under
unit propagation, defined as the least set s′ satisfying: (a)
s ⊆ s′ and (b) if literal l ∈ s′ and (¬l ∨ c) ∈ s′ then
c ∈ s′. Then let V(s) define all possible weakenings:{
c | c is a ground clause and there is a c′ ∈ U(s) s.t. c′ ⊆ c

}
.

Then we define s |=z φ (read: “entails at levels z”) iff one of
the following holds:

• subsume: z = 0, and φ ∈ V(s);
• split: z > 0 and there is some clause c ∈ s such that for

all literals l ∈ c, s ∪ {l} |=(z−1) φ.

This scheme is sound as well as tractable:

Theorem 14: [Liu et al., 2004] Suppose ∆, φ are proposi-
tional formulas and z ∈ N. Then, determining if ∆ |=z φ can
be done in time O((|φ| × |∆|)z+1). Moreover, if ∆ |=z φ then
∆ |= φ.

We will now see how to leverage these results. First, how-
ever, we need the equivalent to restriction-closed, as dis-
cussed above.

Proposition 15: Suppose φ,∆, z are as above. Then if ∆ |=z
φ, and N is any partial model then (∆|N) |=z (φ|N).

Basically, if φ is entailed at level z from ∆, then any restric-
tion of φ under N must also be entailed by ∆ restricted to N,
at least at level z if not lower. Notice that restricting a ground
formula is equivalent to simply conjoining the literals true at
N with both φ and ∆, from which the proof follows. Now,
recall from Theorem 2, given a proper+ KB ∆ and ground
query φ, we have ∆ |= φ iff GND−(∆ ∧ ¬α) is unsatisfiable.
Here, since α is already ground, we really only need to make
sure that ∆ is ground wrt all the names in ∆ ∧ ¬α and k new
ones, k being the rank of ∆. So let GNDα(∆) denote precisely

such a grounding of ∆. It then follows that GNDα(∆) |= α iff
GND−(∆∧¬α) is unsatisfiable iff ∆ |= α. So let Algorithm 1′
be exactly like Algorithm 1 except that it accepts a parameter
z (for limited reasoning) and replaces the following check:

GND(∆ ∧ ¬α, {c1, . . . , ck})|N(i) is unsatisfiable
with

GND(∆, {c1, . . . , ck, d1, . . . , dm})|N(i) |=z (α|N(i) ), where
{d1, . . . , dm} is the set of names appearing in α but not
in ∆.

Theorem 16: Let δ, γ, k,m be as in Theorem 13, and let
z ∈ N. Then with a probability at least 1 − δ, Algorithm 1′
returns a value p̂ such that: (I) and (II) is as in Theorem 13
except for (II.1) which states that ∆ ∧ I |=z α. The algorithm
runs in time O(1/γ2 × (|φ| × |∆|)z+1 × log(1/δ)).

Discussion. Interestingly, in [Liu and Levesque, 2005],
it is shown that reasoning is also tractable in the first-order
case if the knowledge base and the query both use a bounded
number of variables. This would then mean that we would no
longer be limited to ground queries and can handle queries
with quantifiers. This direction is left for future research.
Nonetheless, we note that deciding quantified (as opposed
to ground) queries appears to demand more from learning.
In general, in an infinite domain, we cannot hope to observe
in a finite partial model that universally quantified formulas
are ever true. Thus, we anticipate that extensions that han-
dle queries with quantifiers will need a substantially differ-
ent framework, presumably with stronger assumptions. One
possible framework takes a more credulous approach to the
learning problem (in contrast to our skeptical approach based
on witnessing truth): we suppose that when a formula is fre-
quently false on the distribution of examples, we also fre-
quently obtain a partial model that witnesses the formula
false—e.g., a partial model in which a binding of a candidate
∀-clause falsifies it. This is undoubtedly an assumption about
the benevolent nature of the environment, captured as the no-
tion of concealment in [Michael, 2010], but it does make
learning conceptually simpler. In this framework, one per-
mits all conclusions that are not explicitly falsified. Whether
such an idea can be used for inductive generalization of FOL
formulas over arbitrary distributions remains to be seen.

7 Conclusions
In this work, we presented new results on the problem of
answering queries about formulas of first-order logic (FOL)
based on background knowledge partially represented explic-
itly as other formulas, and partially represented as exam-
ples independently drawn from a fixed probability distribu-
tion. By appealing to the paradigm of implicit learnability, we
sidestepped many major negative results, leading to a learning
regime that works with a general and expressive FOL frag-
ment. No restrictions were posed on clause length, predicate
arity, and other similar technical devices seen in PAC results.
Overall, we hope the simplicity of the framework is appeal-
ing to the readers and hope our results will renew interest
in learnability for expressive languages with quantificational
power.
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