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MOTIVATION:

In practice, training data is often:
•The bottleneck
•The practical injection point for 
domain knowledge



KEY IDEA:

We can use higher-level, 
weaker supervision to program 
ML models
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Outline

• The Labeling Bottleneck: The new pain point of ML

• Data Programming + Snorkel: A framework for weaker, more 
efficient supervision

• In practice: Empirical results & user studies
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The ML Pipeline Pre-Deep Learning

Collection
True

False

Labeling Training

Feature engineering used to be the bottleneck…

Feature 
Engineering
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The ML Pipeline Today

Collection
Representation 

Learning
True

False

Labeling Training

New pain point, new injection point
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Training Data: Challenges & Opportunities
• Expensive & Slow:
• Especially when domain expertise needed

• Static:
• Real-world problems change; hand-labeled 

training data does not.

• An opportunity to inject domain knowledge:
• Modern ML models are often too complex for 

hand-tuned structures, priors, etc.

How do we get—and use—training data more effectively?
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Data Programming + Snorkel
A Framework + System for Creating Training Data with Weak Supervision

NIPS	2016 SIGMOD	(Demo)	2017



Get users to provide higher-level (but 
noisier) supervision,

Then model & de-noise it (using 
unlabeled data) to train high-quality
models

KEY IDEA:
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Data Programming Pipeline in Snorkel

DOMAIN	
EXPERT

Input:	Labeling	Functions,
Unlabeled	data

def lf1(x):
cid = (x.chemical_id, 

x.disease_id)
return 1 if cid in KB else 0

def lf2(x):
m = re.search(r’.*cause.*’, 

x.between)
return 1 if m else 0

def lf3(x):
m = re.search(r’.*not 

cause.*’, x.between)
return 1 if m else 0

Noise-Aware	
Discriminative	Model

Output:	Probabilistic	
Training	Labels

x1,1

x1,2

h1,3

h1,1

h1,2y1

𝜆"

𝜆#

𝜆$

𝑌

Generative	
Model

Users write labeling 
functions to generate 

noisy labels

1
We model the labeling 
functions’ behavior to 

de-noise them

2
We use the resulting 
prob. labels to train 

a model

3

Ex.	Application:	
Knowledge	Base	
Creation	(KBC)
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Surprising Point:

No hand-labeled training data!
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Step 1: Writing 
Labeling Functions
A Unifying Framework for Expressing Weak Supervision

DOMAIN	
EXPERT

def lf1(x):
cid = (x.chemical_id, 

x.disease_id)
return 1 if cid in KB else 0

def lf2(x):
m = re.search(r’.*cause.*’, 

x.between)
return 1 if m else 0

def lf3(x):
m = re.search(r’.*not 

cause.*’, x.between)
return 1 if m else 0

DOMAIN	EXPERT def lf1(x):
cid = (x.chemical_id, 

x.disease_id)
return 1 if cid in KB else 0

def lf2(x):
m = re.search(r’.*cause.*’, 

x.between)
return 1 if m else 0

def lf3(x):
m = re.search(r’.*not cause.*’, 

x.between)
return 1 if m else 0
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Example: Chemical-Disease Relation 
Extraction from Text

• We define candidate entity mentions:
• Chemicals
• Diseases

• Goal: Populate a relational schema with 
relation mentions

ID Chemical Disease Prob.
00 magnesium Myasthenia	

gravis
0.84

01 magnesium quadriplegic 0.73

02 magnesium paralysis 0.96

KNOWLEDGE	BASE	(KB)
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Labeling Functions

• Traditional “distant supervision” 
rule relying on external KB

”Chemical	A	is	found	to	cause	
disease	B	under	certain	
conditions…”

Label = TRUE

Existing	KB Contains (A,B) This	is	likely	to	be	true…	but

def lf1(x):
cid =(x.chemical_id,x.disease_id)
return 1 if cid in KB else 0
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Labeling Functions

• Traditional “distant supervision” 
rule relying on external KB

”Chemical	A	was	found	on	the	
floor	near	a	person	with	
disease	B…”

Label = TRUE

Existing	KB Contains (A,B)
…can	be	false!

def lf1(x):
cid =(x.chemical_id,x.disease_id)
return 1 if cid in KB else 0

We will learn the accuracy of each LF (next)
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Writing Labeling Functions in Snorkel
• Labeling functions take 

in Candidate objects:

Document

Sentence

Span

Entity

CONTEXT	HIERARCHY

• Three levels of abstraction for 
writing LFs in Snorkel:

• Python code

• LF templates

• LF generators

Candidate(A,B) def lf1(x):
cid =(x.chemical_id,x.disease_id)
return 1 if cid in KB else 0

lf1 = LF_DS(KB)

for lf in LF_DS_hier(KB, cut_level=2):
yield lf

A	knowledge	base	
(KB)	with	hierarchyKey Point: Supervision as code
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Supported by Simple Jupyter Interface

snorkel.stanford.edu
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Broader Perspective:

A Template for Weak Supervision
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• Distant supervision

• Crowdsourcing

• Weak classifiers

• Domain heuristics / rules 𝜆 ∶ 𝑋	 ↦ 𝑌 ∪ {∅}

A Unifying Method for Weak Supervision
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Related Work in Weak Supervision
• Distant Supervision: Mintz et. al. 2009, Alfonesca et. al. 2012, Takamatsu et. al. 2012, Roth & 

Klakow 2013, Augenstein et. al. 2015, etc.
• Crowdsourcing: Dawid & Skene 1979, Karger et. al. 2011, Dalvi et. al. 2013, Ruvolo et. al. 2013, 

Zhang et. al. 2014, Berend & Kontorovich 2014, etc.
• Co-Training: Blum & Mitchell 1998
• Noisy Learning: Bootkrajang et. al. 2012, Mnih & Hinton 2012, Xiao et. al. 2015, etc.
• Indirect Supervision: Clarke et. al. 2010, Guu et. Al. et. al. 2017, etc.
• Feature and Class-distribution Supervision: Zaidan & Eisner 2008, Druck et. al. 2009, Liang et. 

al. 2009, Mann & McCallum 2010, etc.
• Boosting & Ensembling: Schapire & Freund, Platanios et. al. 2016, etc.
• Constraint-Based Supervision: Bilenko et. al. 2004, Koestinger et. al. 2012, Stewart & Ermon

2017, etc.

Check	out	our	full	list	@	snorkel.stanford.edu/blog/ws_blog_post.html – we	love	
suggested	additions	or	other	feedback!
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How to handle such a 
diversity of weak supervision 
sources?
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Step 2: Modeling 
Weak Supervision

𝜆"

𝜆#

𝜆$

𝑌 𝑌.

DOMAIN	EXPERT def lf1(x):
cid = (x.chemical_id, 

x.disease_id)
return 1 if cid in KB else 0

def lf2(x):
m = re.search(r’.*cause.*’, 

x.between)
return 1 if m else 0

def lf3(x):
m = re.search(r’.*not cause.*’, 

x.between)
return 1 if m else 0
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Weak Supervision: Core Challenges
• Unified input format

• Modeling

• Using to train a wide range of models
𝜆"

𝜆#

𝜆$

𝑌
• Accuracies	of	sources
• Correlations	between	sources
• Expertise	of	sources
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Weak Supervision: Core Challenges
• Unified input format

• Modeling

• Using to train a wide range of models
𝜆"

𝜆#

𝜆$

𝑌
• Accuracies	of	sources
• Correlations	between	sources
• Expertise	of	sources

NIPS	2016

Intuition: We use agreements / disagreements to learn 
without ground truth
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Basic Generative Labeling Model

Λ0,$

Λ0,#

Λ0,"

𝑌0

Labeling	propensity:
𝛽3 = 𝑝6(Λ0,3 ≠ ∅) 𝑓3;<= Λ0, 𝑌0 = exp	(𝜃3;<=Λ0,3# )

𝑓3<BB Λ0, 𝑌0 = exp	(𝜃3<BBΛ0,3𝑌0)

Accuracy:
𝛼3 = 𝑝6 Λ0,3 = 𝑌0	 	𝑌0, Λ0,3 ≠ ∅)

Correlations ICML	2017
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Intuition: Learning from Disagreements

Learn the model π = 𝑃 𝑦, Λ using MLE
• LFs have a hidden accuracy parameter
• Intuition: Majority vote--estimate labeling 

function accuracy based on overlaps / 
conflicts
• Similar to crowdsourcing but different scaling.
• small number of LFs, large number of labels 

each

Produce a set of noisy training labels 
𝜇H 𝑦, 𝜆 = 𝑃 I,J ~L 𝑦	|	Λ = 𝜆(𝑥)

x1

x3

x5

x2

x4

Unlabeled	
objects

P(λi|yj)

0.85

0.80

0.65

λ1

λ2

λ3

LFs	(𝜆)

P(yi| 𝜆)

0.95

0.80

0.15

0.85

0.65
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Step 2: Training a Noise-Aware Model

In a supervised learning setting, we would learn from ground-truth 
labels:

Here, we learn from the noisy labels:

𝑤P = argminW
1
𝑁Z𝑙(𝑤, 𝑥 0 , 𝑦 0 )

\

0]$

𝑤P = argminW
1
𝑁Z𝔼 𝒚,𝜦 ~𝝅[𝑙 𝑤, 𝑥 0 , 𝑦 0 = 𝑦 ]

\

0]$

Only	requires	simple	tweak	to	loss	function	works	over	many	
models including	Logistic	Regression,	SVMs	and	LSTMs.

𝑇 = { 𝑥$, 0 , 𝑥#, 1 , 𝑥", 0 , … }

𝑇 = { 𝑥$, 0.1 , 𝑥#, 0.6 , 𝑥", 0.3 , … }
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Theory: Scaling with Unlabeled Data
• We show that with:

• O 1 labeling functions of sufficient quality / expressiveness

• 𝑂.(𝜖m#) unlabeled training data points

•à We get 𝑂 𝜖 generalization risk

This is the same asymptotic scaling as in 
supervised methods!
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When is modeling the noise worthwhile?

• Can look at label density:
• Low: Too sparse to beat MV
• High: MV approaches optimal
• Medium: Just right!

• Can use conditional decision rule 
to safely skip gen. modeling stage
• E.g. during early LF dev cycles 
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Putting it All Back Together

DOMAIN	
EXPERT

Input:	Labeling	Functions,
Unlabeled	data

def lf1(x):
cid = (x.chemical_id, 

x.disease_id)
return 1 if cid in KB else 0

def lf2(x):
m = re.search(r’.*cause.*’, 

x.between)
return 1 if m else 0

def lf3(x):
m = re.search(r’.*not 

cause.*’, x.between)
return 1 if m else 0

Noise-Aware	
Discriminative	Model

Output:	Probabilistic	
Training	Labels

x1,1

x1,2

h1,3

h1,1

h1,2y1

𝜆"

𝜆#

𝜆$

𝑌

Generative	Model

Users write labeling 
functions to generate 

noisy labels

1 We model the labeling 
functions’ behavior to 

de-noise them

2 We use the resulting 
prob. labels to train a 

model

3
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How well does this work in 
practice?
Empirical Results
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Results on Chemical-Disease Relations

Distant
Supervision

Precision: 25.5
Recall:      34.8
F1:            29.4

L
1

L
2

L
3

y

Generative
Model

Precision: 52.3
Recall:      30.4
F1:            38.5

+ 9.1

x1

x2

h3

h1

h2y

Discriminative
Model

Precision: 38.8
Recall:      54.3
F1:            45.3

+ 6.8

True

False

Hand
Supervision

Precision: 39.9
Recall:      58.1
F1:            47.3

+ 2.0
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Snorkel is Powering Real Applications
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How easy is this to use in 
practice?
User Study
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71% New	Snorkel	users	matched	or	beat	
7	hours	of	hand-labeling

3rd	Place	Score
No	machine	learning	experience
Beginner-level	Python

How	well	did	these	new	Snorkel	users	do?

2.8x Faster	than	hand-labeling	data

45.5% Average	improvement	
in	model	performance

We	recently	ran	a	Snorkel	biomedical	workshop	in	
collaboration	with	the	NIH	Mobilize	Center

15	companies	and	research	groups	attended

Jason	Fries,	Stephen	Bach,	Alex	Ratner,	Joy	Ku,	Christopher	Ré	

Snorkel User Study
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What’s Next: MTL?
• Hierarchical LFs as weakly-supervised MTL

• And more, see snorkel.stanford.edu
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Conclusion
• Snorkel provides a unifying framework for combining and 

modeling weak supervision

• Allows us to rapidly generate training data for modern ML models

• Labeling functions: supervision as code

• For more check out snorkel.stanford.edu: Code, tutorials, 
blogs, papers

snorkel.stanford.edu


