
Image Classification Using Deep Learning and Prior Knowledge

Soumali Roychowdhury
Computer Science

IMT School of Advanced Studies
Lucca, Italy

Michelangelo Diligenti and Marco Gori
Information Engineering and Mathematical Sciences

University of Siena
Siena, Italy

Abstract

Deep learning has been very successful on image classifica-
tion tasks in the past few years, because it allows to develop
end-to-end solutions, taking as input the raw images in form
of a grid of pixels and returning the class assignments. Se-
mantic Based Regularization is used in this paper as a gen-
eral and novel way to integrate prior knowledge into deep
learning. Semantic Based Regularization takes as input the
prior knowledge, expressed as a collection of first-order logic
clauses (FOL), where each task to be learned corresponds
to a predicate in the knowledge base. Then, it translates the
knowledge into a set of constraints which can be either inte-
grated into the learning process or used in a collective classi-
fication step during the test phase. The integration of the do-
main knowledge during the train or test phase is realized via
the same backpropagation schema that runs over the expres-
sion trees of the grounded FOL clauses. The methodology
can be applied on top of any learner and the experimental
results on CIFAR-10 show how the integration of the prior
knowledge boosts the accuracy of many different deep archi-
tectures.

Introduction
The advances on Deep Convolutional Neural Networks
(CNNs) [Bengio2009, LeCun2015, Hinton2012] started a
new line of research that has been outperforming other ar-
chitectures on the most popular benchmarks on image clas-
sification, starting from AlexNet [Krizhevsky, Sutskever,
and Hinton2012] and later improved architectures like
VGG [Szegedy et al.2016a], Network In Network [Lin,
Chen, and Yan2013], Inception [Szegedy et al.2015,Szegedy
et al.2016b]. Some of these architectures rely on the success
of Residual networks (ResNet) [Kaiming et al.2015], which
have shown how to further increase the depth of the net-
works with no loss of accuracy.

The classification of images using deep CNNs relies on
the collection of a large number of supervised training ex-
amples to avoid over-fitting and poor classification accuracy.
Unfortunately, the collection of supervised data is complex
and highly labour intensive.

An alternative way to effectively train complex networks
with limited data is to enforce some kind of structure in

the network architecture: this structure encodes any avail-
able domain prior knowledge in the network without relying
on massive amount of data to extrapolate it. For example,
explicitly inserting important feature crosses without rely-
ing on the network to implicitly develop them has shown
some gains in classification tasks [Ruoxi et al.2017, Cheng
et al.2016]. Beside simple tricks at the feature representa-
tion level, deep learning is generally used off-the-shelf with-
out relying on any general and flexible way for incorporating
prior knowledge like relationships among the data instances,
or enforcing consistency among the predicted classes in a
multi-label environment.

In the field of Statistical Relational Learning, injecting
symbolic knowledge into sub-symbolic learning via neural
networks has been previously explored. Markov Logic Net-
works [Richardson and Domingos2006, Wang and Domin-
gos2008] and Probabilistic Soft Logic [Broecheler, Mi-
halkova, and Getoor2010] have received a lot of atten-
tion: these attempts do not provide a very tight integra-
tion between the logic and the deep learner layers, which
are only stacked as input to the probabilistic logic layer.
More recently, a direct integration of FOL logic rules into
the training of neural networks has been proposed in [Hu
et al.2016, Serafini, Donadello, and d’Avila Garcez2017].
However, the proposed solution is still limited in terms of
the kind of knowledge that can be integrated. Furthermore,
the knowledge can be injected only at the training time but
it can not be enforced during classification.

This paper is based on the Semantic Based Regularization
(SBR) [Diligenti et al.2012,Diligenti, Gori, and Saccà2015]
framework, which integrates the ability to learn from exam-
ples and logic rules. The learning task in SBR is formulated
as a multi objective optimization problem where a set of con-
straints must be satisfied along with the traditional regular-
ization term. The constraints translate First-order Logic for-
mulas which expresses the relationships on the patterns (i.e
the relationships among the attributes of data instances or su-
pervised examples) as well as general prior knowledge from
the environment. SBR has the unique ability to enforce the
constraints even during the test time, which makes it flexi-
ble to perform collective classification [Jensen, Neville, and
Gallagher2004a, Getoor and Taskar2007]. This paper pro-
poses a backpropagation schema, running across the expres-
sion trees of the FOL formulas of the knowledge base, which

PRELIMINARY VERSION: DO NOT CITE

can be elegantly applied during training or during the test
phase with no modification.

In the experimental section, the expressive power of the
FOL knowledge is used inject consistency constraints into
an image classification task. In particular, this paper uses the
hierarchical structure of the classes of the CIFAR-10 dataset
to enforce the consistency of the predictions obtained from
various deep CNN architectures. The integration of logic
knowledge improves the results on the CIFAR-10 dataset for
a wide range of underlying deep learning architectures with
a negligible increase in the computational cost.

The main contributions of the paper are the following:

• the definition of a general backpropagation schema that
allows to inject any prior knowledge expressed via FOL
into deep learning.

• Improving classification accuracy for some state-of-the-
art models using the proposed collective classification
mechanism.

Learning with Constraints

Semantic Based Regularization [Diligenti et al.2012, Dili-
genti, Gori, and Saccà2015] learns a set of T functions
f = {f1, . . . , fT } which are correlated by a set of H func-
tionals Φh(f), 0 ≤ Φh(f) ≤ 1, h = 1, . . . ,H describing
the prior knowledge about how the functions should behave.
These functionals can express some property of the func-
tions like correlations, bounds and so on, therefore limiting
the parameter space where good solutions can be found.

Let’s assume that the j-th function is associated to a sam-
ple Xj of patterns input to the function, Each pattern is then
represented via a vector of real-valued features. The set of
examples Ej ⊂ Xj is also provided to express the desired
function outputs over a subset of the available patterns.

Generally speaking, different functions can share the
same sample of input patterns (e.g. Xj = Xi i 6= j). The
framework does not impose any limit to the arity of the
predicates, which can also express relationships, even if the
following description will be limited to unary predicates to
keep the notation simple. When dealing with n-ary relations,
the pattern representations associated to these functions can
be obtained as the Cartesian product of a set of finite do-
mains: Xj = Xj1 ×Xj2 ×

The vector of values obtained by applying the function
fk to the set of patterns Xk is indicated as fk(Xk), while
f(X) = f1(X1) ∪ f2(X2) ∪ . . . collects the groundings for
all functions.

Using the classical constrained optimization approach,
the functionals can be integrated into learning by transform-
ing them into constraints enforced by penalizing their viola-
tion on the sample of data together with another term which
forces the fitting of the supervised data for each function and

a regularization term:

Ce[f(X)] =

T∑
k=1

(Reg︷ ︸︸ ︷
||fk||2 +

+

Labeled︷ ︸︸ ︷
λl
∑
x∈Ek

L(fk(x), yk(x))
)

+

+

Logic︷ ︸︸ ︷
H∑

h=1

λhLc

(
Φh

(
f(X)

))
(1)

where Ek is the set of labelled data available for the k-th
function, L(·, ·) is a loss function, yk(x) is the target output
value for the x pattern for task k, λl is the weight for the la-
belled portion of the cost function, Lc(·) is the loss function
used for the constraint part and λh is the weight for the h-th
constraint.

In the following section we will discuss how to define the
functionals/constraints and optimize the cost function.

Constraints and Logic
Let us assume that a First Order Logic (FOL) knowledge
base (KB) is given, whose predicates are either fully known
a priori (given) for all possible groundings or are approxi-
mated via functions that are being learned. The KB is con-
verted into a form suitable for optimization by a variation
of fuzzy generalizations of FOL, which have been first pro-
posed by Novak [Novák1987]. Fuzzy FOL uses tnorms to
compute the degree of satisfaction of the rule for a given
grounding of the variables. A degree of satisfaction of the
FOL formula is obtained by iteratively grounding the vari-
ables and the aggregating the values using the average and
maximum operations over the obtained values for the uni-
versal and existential quantifiers, respectively.

Grounded Expressions Any grounded FOL rule is an ex-
pression in propositional logic. Therefore, we start studying
the conversion of a propositional logic expression into a con-
tinuous and differentiable constraint. A t-norm is a function
t : [0, 1] × [0, 1] → [0, 1], which is continuous, commuta-
tive, associative, monotone, and featuring a neutral element
1 (i.e. t(a, 1) = a). A t-norm fuzzy logic is defined by its t-
norm t(a1, a2) that models the logical AND. The other logic
operations can be derived from the tnorm, therefore allow-
ing to build a continuous function for any propositional logic
expression.

One expression tree is built for each considered grounded
FOL rule, where the basic logic operations (¬,∧,∨,⇒) are
replaced by a unit computing the logic operation specific
to the used tnorm. Once the output values of the grounded
operands are computed, the expression tree recursively com-
putes the output values of all the nodes. The value ob-
tained on the root node is the result of the evaluation of the
grounded expression.

Table 1 details the operations computed by the units in
the forward step given inputs for different selections of the

Table 1: The operations performed by the single units of an expression tree depending on the left and right inputs x, y and the
tnorm used.

op
tnorm Product Minimum Lukasiewicz

x ∧ y x · y min(x, y) max(0, 1− x− y)
x ∨ y x+ y − x · y max(x, y) min(1, x+ y)
¬x 1− x 1− x 1− x

x⇒ y min(1, yx) x < y?1 : y x < y?1 : y − x

OR

NOT AND

fA (x) fB (x) fC (x)

1� fA (x) fB (x) · fC (x)

tE (f(x)) = 1✁ f A (x) + fA (x) · fB (x) · fC (x)

Figure 1: Forward propagation of the values in the expres-
sion tree of a FOL formula for the grounding x = x̄ when
using the product tnorm. The output of the root node returns
a value in [0, 1] corresponding to the evaluation tE of the
rule for the given grounding.

tnorm. For example consider the rule ∀x[¬A(x)] ∨ [B(x) ∧
C(x)]. For any given grounding, the expression tree returns
the output value: tE(f(x)) = 1− fA(x) + fA(x) · fB(x) ·
fC(x). Figure 1 shows the expression tree and the compu-
tation that is performed for the previous FOL rule grounded
with x = x̄.

Quantifiers We focus on FOL formulas in the Prenex Nor-
mal Form form (quantifiers are placed at the beginning of the
expression) as any FOL formula can be equivalently written
in this form. The degree of truth of a formula containing an
expression E with a universally quantified variable xi is the
average of the tnorm generalization tE(·), when grounding
xi overXi: Φ(f(X)) = 1

|Xi|

∑
xi∈Xi

tE
(
f([x,X/Xi])

)
In the

previous example, this would yield the following functional:

Φ(f(X)) =
∑
x∈X

tE
(
f(x)

)
=

=
∑
x∈X

1 − fA(x) + fA(x) · fB(x) · fC(x)

For the existential quantifier, the truth degree is instead
defined as the maximum of the tnorm expression over the do-
main of the quantified variable. When multiple universally
or existentially quantified variables are present, the conver-
sion is recursively performed from the outer to the inner
variables. When only universal quantifiers are present in a
formula, the aggregation reduces to the overall average over

each grounding x:

Φ(f(X)) =
1

|X |
∑
x∈X

tE
(
f(x)

)
Backpropagation with Logic Constraints

Equation 1 can be optimized via gradient descent, where the
derivative of the cost function with respect to the j-th weight
of the i-th function wij is:

∂Ce

∂wij
=

∑
x∈Ei

∂L(fi(x), yk(x))

∂fi
· ∂fi
∂wij

+

+
∑
k

∂Ce

∂Lc
· ∂Lc

∂Φk
· ∂Φk

∂fi
· ∂fi
∂wij

. (2)

where the regularization term has been omitted to keep the
notation simple. Assuming that the fi(·) are implemented by
a neural network, the first term corresponds to the classical
labelled error which can be minimized via backpropagation.

Since any tnorm guarantees that Φk is in [0, 1], choosing
Lc(·) = L1(1, ·) = 1−· yields ∂Ce

∂Lc
= −1. Finally, ∂fi

∂wij
can

also be computed via standard back-propagation step using
the underlying neural network.

This section shows how to efficiently compute the ∂Φk

∂fi
.

To kept notation simple, we will discuss only rules with uni-
versally quantified variables but the same ideas can be triv-
ially extended to existentially quantified variables. A univer-
sally quantified rule expresses the fact that all the groundings
should respect the grounded FOL formula. Backpropagation
is performed over the expression trees built for the selected
tnorm and each single grounding, yielding:

∂Φk

∂fi
=

1

|X |
∑
x∈X

∂tE (f(x))

∂fi

It can be noticed that
∂tE(f (x))

∂fi
can be computed by

backpropagation over the expression tree built for the propo-
sitional expression E in the FOL formula. In particular, in-
dicating as on the output of node n of the expression tree,
and assuming that the root node is node 0 for which its out-
put o0 = tE (f(x)), then the derivative is recursively prop-
agated backward using the chain rule over the expression
tree:

∂tE(f (x))
∂on

=
∂tE(f (x))

∂op(n)
· ∂op(n)

∂on

where p(n) indicates the parent of node n in the tree and
∂tE(f (x))

∂o0
= 1. For any node n, the derivative ∂op(n)

∂on

OR

NOT AND

fA (x) fB (x) fC (x)

E

o0

E

o0
· (1 fB (x) · fC (x))

E

o0
· fA (x) · fC (x)

E

o0
· fA (x) · fB (x)

E

o0
· fA (x)E

o0
· (1 fB (x) · fC (x))

Figure 2: The backpropagation of the values over the ex-
pression tree for the grounding x = x̄ of the FOL rule
∀x[¬fA(x)] ∨ [fB(x) ∧ fC(x)] using the product tnorm.
The backpropagated derivative reaches a leaf node and it is
passed down to trigger a further backpropagation pass over
the network which implements the function in the leaf node.

is determined by the used tnorm and the logic operation
tnorm(n) computed by the unit, such that

∂op(n)

∂on
= tnorm(p(n))′{l,r}

where the subscripts {l, r} indicate whether node n is the
left or right child of p(n). This is needed because the inputs
to the logic operations may be not symmetric. The negation
is an unary operation and requires no subscripts. Table 2 de-
tails how the gradients are back-propagated depending on
the specific operation and considered tnorm.

This establishes an efficient gradient computation schema
over the expression tree, where the error of the consid-
ered FOL constraint is back-propagated from the root to the
leaves. Figure 2 shows the backpropagation of the error for
the example used across this paper ∀x[¬fA(x)] ∨ [fB(x) ∧
fC(x)]. At the bottom of the expression tree, the backpropa-
gated error reaches a leaf node, and it triggers a further back-
propagation pass over the network implementing the func-
tion stored in that node.

Collective Classification
Collective classification (CC) [Sen et al.2008] is one of
the most important tasks studied by Statistical Relational
Learning [Jensen, Neville, and Gallagher2004b, Neville and
Jensen2003, Jensen, Neville, and Gallagher2004a, Taskar,
Segal, and Koller2001]. Collective classification assumes
that the test patterns are not independent, therefore their
classification should not be independently carried out like
assumed in standard machine learning tasks. CC performs
inference over a set of instances that are connected by one
or more kind of relationships. In this paper, collective clas-
sifications is used to refine the neural network outputs to be
consistent with the available FOL knowledge.

In particular, let fk(X ′k) indicate the vector of values ob-
tained by evaluating the function fk over the data points of
the test set X ′k. The set of vectors is indicated as: f(X ′) =
f1(X ′1) ∪ . . . ∪ fT (X ′T).

Collective classification searches for the values f̄(X ′k) =
f̄1(X ′1) ∪ . . . ∪ f̄T (X ′T) respecting the FOL formulas on the

FLIES

CAT DOG DEER HORSE FROG BIRD AIRPLANE SHIP AUTO TRUCK

MAMMAL ONROAD

ANIMAL
TRANSPORT

NOT−FLIES

Figure 3: The taxonomy showing the hyperonymy relations
among the predicates of the classes in the CIFAR-10 dataset.
The final target classes in the benchmark are the leaf classes
in the tree.

test data, while being close to the prior values established by
the networks:

Ccc[f̄(X ′),f(X ′)] =
1

2

T∑
k=1

|f̄k(X ′k)− fk(X ′k)|2 +

+
∑
h

Lc

(
Φh

(
f̄(X ′)

))
(3)

The learning schema proposed in the previous section na-
tively generalizes to the collective classification case. The
gradient computation over the expression tree is completely
preserved, the only difference is that the gradient is propa-
gated only up the function outputs during collective classi-
fication, whereas it is back propagated through the network
in case of training with constraints. In particular, no back-
propagation down to the model weights is performed: ∂fi

∂wij

is dropped from equation 2 during collective classification.

Experimental Results
The experimental analysis is based on the CIFAR-10
dataset [Krizhevsky and Hinton2009]1, which is composed
of 60000 images, of which 50000 and 10000 ones form the
training and test datasets, respectively. Each image is stored
as RGB with a size of 32×32. Each image is assigned to one
of 10 classes: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. Using WordNet2 and additional com-
mon knowledge, these classes have been recursively mapped
into their hyperonymy (e.g. more general concept) obtaining
the taxonomy shown in Figure 3. In all our experiments we
trained the models using the training set and obtained the
classification outputs from the test set.

CIFAR-10 has been used as one of the main dataset to
measure the improvements of deep architectures on the im-
age classification task. In particular, we compared against
the following CNN deep architectures:

• Network In Network (NIN): this model was proposed
in [Lin, Chen, and Yan2013] and it is based on a CNN
architecture where the linear filters of the convolutional
layer have been replaced by a small neural network to ab-
stract the data within the receptive field.

1https://www.cs.toronto.edu/˜kriz/cifar.
html

2https://wordnet.princeton.edu

Table 2: The derivatives used in the back-propagation step depending on the Tnorm used and the operation implemented by the
unit.

tnorm′op

tnorm
Product Minimum Lukasiewicz

(x ∧ y)′l = ∂(x∧y)
∂x y y < x?1 : 0 x+ y < 1?− 1 : 0

(x ∧ y)′r = ∂(x∧y)
∂y x x < y?1 : 0 x+ y < 1?− 1 : 0

(x ∨ y)′l = ∂(x∨y)
∂x 1− y y > x?1 : 0 x+ y < 1?1 : 0

(x ∨ y)′r = ∂(x∨y)
∂y 1− x x > y?1 : 0 x+ y < 1?1 : 0

(¬x)′ = ∂(¬x)
∂x −1 −1 −1

(x⇒ y)′l = ∂(x⇒y)
∂x x < y?0 : − y

2·x2 0 y > x?y : 1

(x⇒ y)′r = (∂x⇒y)
∂y x < y?0 : − 1

x x < y?0 : 1 x > y?x : −1

Table 3: Prior Knowledge injected into the classification pro-
cess for the CIFAR-10 dataset.

∀x ANIMAL(x)∨ TRANSPORT(x)
∀x TRANSPORT(x)⇒ AIRPLANE(x) ∨ SHIP(x)∨ ONROAD(x)
∀x ONROAD(x) ⇒ AUTOMOBILE(x) ∨ TRUCK(x)
∀x AIRPLANE(x)⇒ TRANSPORT(x)
∀x SHIP(x)⇒ TRANSPORT(x)
∀x ONROAD(x) ⇒ TRANSPORT(x)
∀x AUTOMOBILE(x)⇒ ONROAD(x)
∀x TRUCK(x) ⇒ ONROAD(x)
∀x ANIMAL(x)⇒ BIRD(x)∨ FROG(x)∨ MAMMAL(x)
∀x BIRD(x)⇒ ANIMAL(x)
∀x FROG(x)⇒ ANIMAL(x)
∀x MAMMAL(x)⇒ CAT(x)∨ DEER(x) ∨ DOG(x)∨ HORSE(x)
∀x CAT(x) ⇒ MAMMAL(x)
∀x DOG(x) ⇒ MAMMAL(x)
∀x DEER(x) ⇒ MAMMAL(x)
∀x HORSE(x) ⇒ MAMMAL(x)(x)
∀x OTHERLEAVES(x)⇒ BIRD(x)∨ FROG(x)∨ SHIP(x) AIRPLANE(x)
∀x BIRD(x) ⇒ OTHERLEAVES(x)
∀x FROG(x)⇒ OTHERLEAVES(x)
∀x SHIP(x) ⇒ OTHERLEAVES(x)
∀x AIRPLANE(x)⇒ OTHERLEAVES(x)
∀x FLIES(x) ⇒ BIRD(x)∨ AIRPLANE(x)
∀x NOTFLIES(x)⇒ CAT(x) ∨ DOG(x)∨ HORSE(x)∨ DEER(x) ∨ TRUCK(x)

∨ SHIP(x)∨ AUTOMOBILE(x) ∨ FROG(x)
∀x CAT(x)⇒ NOTFLIES(x)
∀x DOG(x) ⇒ NOTFLIES(x)
∀x HORSE(x) ⇒ NOTFLIES(x)
∀x DEER(x) ⇒ NOTFLIES(x)
∀x TRUCK(x)⇒ NOTFLIES(x)
∀x SHIP(x) ⇒ NOTFLIES(x)
∀x AUTOMOBILE(x) ⇒ NOTFLIES(x)
∀x FROG(x) ⇒ NOTFLIES(x)
∀x BIRD(x) ⇒ FLIES(x)
∀x AIRPLANE(x)⇒ FLIES(x)

• Resnet and PreResnet: residual networks [Kaiming et
al.2015] feature the higher level layers to compute and
learn residual functions (e.g. deltas) with respect of
the previous layer output. Pre-activated Resnets [He
et al.2016] further improve the resnet behaviour by
analysing the propagation formulations behind the resid-
ual building blocks.

• Pyramidal Resnet Models [Han, Kim, and Kim2016]
where the feature map dimension resembles a pyramid in
Pyramidal Resnets.

Training Procedure. The benefits of injection of prior
knowledge into deep learning have been tested against the
baseline results obtained from the different CNN models.
The used knowledge base has 7 extra predicates added to
the predicates for the output classes as shown in Figure 3,

and each network was modified to predict the output for
all classes. This was done by adding additional output lay-
ers using a softmax activation, one layer predicts Animal
or Transport, one layer Fly or NotF ly, one layer for
Onroad, Mammal or Others as a bin class collecting all
other categories. In order to exactly reproduce the baseline
results, the baseline models have been trained from scratch
using their publicly available implementations without no
change in their architecture and training procedure. Once the
baseline model is trained, its weights are frozen and only the
additional output layers for the new 7 predicates are trained
in a second step.

The models are trained in mini batches of size 128 and
the training time required by each network architecture is
recorded in Table 5 for each of the models.

The testset classification error rates over the 10 final
classes for each of the deep CNN models is shown in the
Table 5. The classification outputs initialize a collective
classification step where the proposed methodology adjusts
the class assignments in order to respect the constraints.
We experimented with different T-Norms to convert the
knowledge: Lukaseiwicz, Weak-Lukaseiwicz [Giannini et
al.2017], Minimum and Product T-Norms. Collective clas-
sification is performed using gradient descent for 400 itera-
tions and an initial learning rate equal to 0.01.

Performance Evaluation. Table 4 reports the error ob-
tained when running collective classification on top of the
results obtained with the single architectures using different
tnorms. The Weak Lukaseiwicz tnorm is the best performer
in almost all configurations, this could be partially explained
by the theoretical results shown in [Giannini et al.2017].

Table 5 reports a comparison of the results obtained with
the single CNN models and the proposed approach using
collective classification with the Weak Lukaseiwicz tnorm.
In particular, the classification error rates obtained from the
baseline models on CIFAR-10 are compared against the er-
ror rates obtained after collective classification. Collective
classification brings a remarkable improvement over the in-
dividual classification in several cases. Another advantage of
the proposed methodology is the negligible cost of the col-
lective classification step compared to initial cost of train-
ing the network. Indeed, the collective classification train-

Table 4: Comparison of the Error rate for the 10 final classes on CIFAR-10 dataset using collective classification in combination
with different Tnorms.

CNN Model # of Layers CC Error CC Error CC Error
Weak Lukaseiwicz TNorm Minimum TNorm Product TNorm

NIN 50 8.71 8.78 8.81
Resnet 20 8.01 8.24 8.75
Resnet 32 7.09 7.29 7.50
Resnet 44 6.58 6.8 7.10
Resnet 56 6.39 6.61 7.00
Resnet 110 5.96 6.0 6.60
Resnet 164 5.76 5.90 5.90
Resnet 1202 5.17 5.42 6.88
Pre-Activated Resnet 110 6.15 6.31 6.35
Pre-Activated Resnet 164 5.20 5.42 5.46
Pre-Activated Resnet 1202 6.05 6.30 6.24
AdditivePyramid Net, α = 84 110 4.15 4.27 4.27
AdditivePyramid Net, α = 270 164 3.44 3.46 3.48
AdditivePyramid Net, α = 200 272 3.30 3.30 3.30

Table 5: Error rate for the 10 final classes on CIFAR-10 dataset using collective classification over the outputs from different
deep CNNs and comparing between usage and non-usage of prior knowledge.

CNN Model # of Layers # of Parameters Train Time Error Error after CC
(%) (Hours) (%)

Human Performance - - > 100 6 -
NIN 50 1.01M 1.39 8.81 8.71
Resnet 20 0.27 M 0.27 8.75 8.01
Resnet 32 0.46 M 0.48 7.51 7.09
Resnet 44 0.66 M 0.67 7.17 6.58
Resnet 56 0.85 M 0.83 6.97 6.39
Resnet 110 1.7 M 1.38 6.61 5.96
Resnet 164 1.7M 1.39 5.93 5.76
Resnet 1202 19.4 M 20.83 7.93 5.17
Pre-Activated Resnet 110 1.7 M 1.39 6.37 6.15
Pre-Activated Resnet 164 1.7 M 1.39 5.46 5.20
Pre-Activated Resnet 1202 19.4 M 20.83 6.85 6.05
AdditivePyramid Net, α = 84 110 3.8 M 3.56 4.27 4.15
AdditivePyramid Net, α = 270 164 27.0 M 29.78 3.48 3.44
AdditivePyramid Net, α = 200 272 26.0 M 30 3.31 3.30

ing can be completed in less than 6 minutes for the entire
test set of CIFAR-10 on the same machine used to train the
CNN architectures. The results for all ResNet architectures
show remarkable improvements like the Resnet-1202 gets
an error reduction larger than 2.7% (from 7.93 to 5.17) and
PreResnet-1202 error is reduced from 6.85 to 6.05. The im-
provement for for the best PyramidNetwork configuration is
not statistically significant, probably because of the lower
initial error. The improvements given by the methodology
and the low additional cost seem to suggest that the injec-
tion of prior knowledge could allow to use a simpler model
(greatly reducing the training time) and then letting the col-
lective classification step to improve the results at the level
which could be achievable using a larger and slower-to-train
model.

Conclusions and Future Work
This paper presents a novel framework to inject prior knowl-
edge into image classification problems like CIFAR-10. The
methodology can be applied on top of any deep learning ar-
chitecture used to process the raw images. The full expres-
sive power of FOL is available, and the framework does
not add any limitation in the kind of knowledge that can
be integrated. The presented results show remarkable im-
provements with respect to several tested architectures. This
shows that it is possible to train simpler models and then
cover some of the gap with more complex ones by instan-
tiating a lightweight collective inference on top of the ob-
tained class assignments. As future work, we plan to extend
these results to CIFAR-100 and larger datasets, where the
complexity of the benchmark allows to formulate extensive
domain knowledge.

References
Bengio, Y. 2009. Learning deep architectures for ai. Found.
Trends Mach. Learn. 2(1):1–127.
Broecheler, M.; Mihalkova, L.; and Getoor, L. 2010. Prob-
abilistic similarity logic. In Proceedings of the Twenty-Sixth
Conference on Uncertainty in Artificial Intelligence (UAI),
73–82.
Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.;
Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.;
et al. 2016. Wide & deep learning for recommender systems.
In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, 7–10. ACM.
Diligenti, M.; Gori, M.; Maggini, M.; and Rigutini, L. 2012.
Bridging logic and kernel machines. Machine learning
86(1):57–88.
Diligenti, M.; Gori, M.; and Saccà, C. 2015. Semantic-
based regularization for learning and inference. Artificial
Intelligence.
Getoor, L., and Taskar, B. 2007. Introduction to statistical
relational learning.
Giannini, F.; Diligenti, M.; Gori, M.; and Maggini, M. 2017.
Learning lukasiewicz logic fragments by quadratic program-
ming. In Proceedings of the European COnference on Ma-
chine Learning (ECML).
Han, D.; Kim, J.; and Kim, J. 2016. Deep pyramidal residual
networks. arXiv preprint arXiv:1610.02915.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Identity map-
pings in deep residual networks. In European Conference
on Computer Vision, 630–645. Springer.
Hinton, G. E. 2012. A Practical Guide to Training Restricted
Boltzmann Machines. Berlin, Heidelberg: Springer Berlin
Heidelberg. 599–619.
Hu, Z.; Ma, X.; Liu, Z.; Hovy, E. H.; and Xing, E. P. 2016.
Harnessing deep neural networks with logic rules. CoRR
abs/1603.06318.
Jensen, D.; Neville, J.; and Gallagher, B. 2004a. Why collec-
tive inference improves relational classification. In Proceed-
ings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, 593–598. ACM.
Jensen, D.; Neville, J.; and Gallagher, B. 2004b. Why collec-
tive inference improves relational classification. In Proceed-
ings of the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 593–598.
Kaiming, H.; Xiangyu, Z.; Shaoqing, R.; ; and Jian, S. 2015.
Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385.
Krizhevsky, A., and Hinton, G. 2009. Learning multiple
layers of features from tiny images.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Pereira, F.; Burges, C. J. C.; Bottou, L.; and Wein-
berger, K. Q., eds., Advances in Neural Information Process-
ing Systems 25. Curran Associates, Inc. 1097–1105.
LeCun, Y. 2015. Deep learning. Nature 521.

Lin, M.; Chen, Q.; and Yan, S. 2013. Network in network.
arXiv preprint arXiv:1312.4400.
Neville, J., and Jensen, D. 2003. Collective classification
with relational dependency networks. In Proceedings of the
Second International Workshop on Multi-Relational Data
Mining, 77–91.
Novák, V. 1987. First-order fuzzy logic. Studia Logica
46(1):87–109.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Mach. Learn. 62(1-2):107–136.
Ruoxi, W.; Bin, F.; Gang, F.; and Mingliang, W. 2017. Deep
& cross network for ad click predictions. In Proceedings of
the ADKDD workshop.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine 29(3):93.
Serafini, L.; Donadello, I.; and d’Avila Garcez, A. S. 2017.
Learning and reasoning in logic tensor networks: theory and
application to semantic image interpretation. In Proceed-
ings of the Symposium on Applied Computing, SAC 2017,
Marrakech, Morocco, April 3-7, 2017, 125–130.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 1–9.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wo-
jna, Z. 2016a. Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2818–2826.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2016b. Rethinking the inception architecture for com-
puter vision. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).
Taskar, B.; Segal, E.; and Koller, D. 2001. Probabilistic clas-
sification and clustering in relational data. In IJCAI Interna-
tional Joint Conference on Artificial Intelligence, 870–876.
Wang, J., and Domingos, P. 2008. Hybrid markov logic
networks. In Proceedings of the 23-rd AAAI Conference on
Artificial Intelligence, 1106–1111.

