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1 Introduction

AI and machine learning methods have become essential
tools in decision-making processes that affect people’s lives,
such as loan approval, advertising, employment, education,
criminal risk assessment, policing, etc. Concerns of bias and
algorithmic discrimination (Boyd, Levy, and Marwick 2014)
have raised attention in recent years and there is starting to
be works on methods for ensuring fairness. These include
dealing with biases through unawareness/blindness, aware-
ness/Lipschitz property (Dwork et al. 2012), demographic
parity/disparate impact (Feldman et al. 2015), preference-
based (Zafar et al. 2017), and equality of opportunity (Hardt,
Price, and Srebro 2016).

While there is starting to be fairness in ML, there is
no work that considers relational information. Since many
forms of bias occur in social context, leveraging relational
information is essential. The goal of fairness in classic
setting is to design algorithms that make fair predictions
across both protected and unprotected groups where pro-
tected group is recognized based on a protected attribute
such as age, gender, race, religion, etc.

In this paper, our main objective is to develop fairness
in relational machine learning models while the protected
group is based on protected attributes such as gender, race,
etc, but we expand the definitions to include the relational
context in which discrimination may occur. This extension
leads to a richer notion of fairness, that both allows for more
complex statistical modeling of dependencies, and richer
definitions of fairness. We believe these richer models are
needed to realistic settings such as employment discrimina-
tion in which biases in producing reports from employees
influence on their promotion, or discrimination in reviewing
process of papers based on the rank of the universities.

In this paper, we first introduce and formulate fairness
in relational setting, then we propose 1) fairness-aware
constrained conditional inference subject to common data-
oriented fairness measures and 2) fairness-aware learning
by incorporating decision-oriented fairness measures.

*Equal contributors.

2 Fairness in relational setting
In this section, we formalize relational fairness using
first-order logic: An atom is an expression of the form
p(a1, a2, . . . , an) where p is a predicate symbol, and each
argument a1, a2, . . . , an is either a constant or a variable.
The finite set of all possible substitutions of a variable to a
constant for a particular variable a is called its domain Da.
If all variables in p(a1, a2, . . . , an) are substituted by some
constant from their respective domain, then we call the re-
sulting atom a ground atom. A formula is defined by induc-
tion: every atom is a formula. If α and β are formulae, then
α ∨ β, α ∧ β, ¬α, ∃xα, ∀xα are formulae. An interpreta-
tion I is a mapping that associates a truth value I(P ) to each
ground atom P .

We denote formula F which has only one free variable
v (i.e. other variables in F are quantified) by F [v]. The
population defined by F [v] is the set of substitutions of
v for which F [v] holds. A discriminative pattern is a pair
DP [v] ≡ (F1[v], F2[v]) , where F1[v] and F2[v] are formu-
lae.
Example 1. The two formulae in the discrimination pat-
tern DP[v] :=

(
(∀u,¬Affiliated(v, u) ∨ ¬TopRank(u)),

Student(v)
)

specify two populations, namely the individu-
als who are not affiliated with a top-rank institute and the
student authors.

Given an interpretation I , the protected group

PG ≡ {v : F1[v] ∧ F2[v]}
is defined as the set of all instances hold for variable v for

which F1[v] ∧ F2[v] is true under interpretation I , that is,
I(F1[v] ∧ F2[v]) = 1. Similarly, the unprotected group

UG ≡ {v : ¬F1[v] ∧ F2[v]}
is defined as the set of all instances holds for variable v for

which I(¬F1[v] ∧ F2[v]) = 1. A decision atom d(v) is an
atom containing exactly one variable v that specifies a deci-
sion affecting the protected group which is defined either by
law or end-user.
Example 2. The protected group of the discrimination pat-
tern specified in Example 1 is

PG :=
{
v :
(
∀u, ¬Affiliated(v, u) ∨ ¬TopRank(u)

)
∧ Student(v)

}
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and the unprotected group is

UG :=
{
v :
(
∃u,

(
Affiliated(v, u) ∧ TopRank(u)

)
∧ Student(v)

}
.

The decision atom d[v] := Presents(v) indicates the benefit
of presenting a paper at a conference.

3 Fairness-aware Inference
To formulate fairness in the relational setting, in this sec-
tion we propose fairness-aware constrained conditional in-
ference subject to common data-oriented fairness measures.
We first introduce these fairness measures and then re-define
them using the notation introduced in Section 2. Let a and c
denote the counts of denial (i.e., negative decisions) for pro-
tected and unprotected groups, and n1 and n2 denote their
sizes, respectively. Let p1 = a/n1 be the proportion of bene-
fit denied for the protected group, and p2 = c/n2 be the pro-
portion of benefit denied for the unprotected group. Using
p1 and p2 we can define three well-known fairness measures
as follows:

1. Risk difference: RD = p1 − p2, also known as absolute
risk reduction. The UK uses RD as it’s legal definition of
fairness measure.

2. Risk Ratio: RR = p1/p2, also known as relative risk. The
EU court of justice has given more emphasis on the RR as
a measure of fairness.

3. Relative Chance: RC = 1− p1/1− p2 also known as se-
lection rate. The US laws and courts mainly refer to the
RC as a measure of fairness. For further information we
refer to (Pedreschi, Ruggieri, and Turini 2012).

Notice that RR is the ratio of benefit denial between the pro-
tected and unprotected groups, while RC is the ratio of ben-
efit granting.

Now, we can formulate these measures using the formal-
ism defined in Section 2. Given the decision atom d(v) and
discriminative pattern DP(F1[v], F2[v]), the counts of denial
for both protected and unprotected groups are computed by
the following equations:

a ≡
∑
v∈Dv

I
(
¬d(v) ∧ F1[v] ∧ F2[v])

c ≡
∑
v∈Dv

I
(
¬d(v) ∧ ¬F1[v] ∧ F2[v])

n1 ≡
∑
v∈Dv

I
(
F1[v] ∧ F2[v])

n2 ≡
∑
v∈Dv

I
(
¬F1[v] ∧ F2[v])

Using these counts, the fairness measures can be com-
puted as: RD ≡ a/n1− c/n2, RR ≡ a/n1

c/n2
, and RC ≡ 1−a/n1

1−c/n2
.

Finally, we introduce the notion of δ-fairness.

Definition 1 (δ-fairness). If a fairness measure for a deci-
sion making process falls within some δ-window, then the

process is δ-fair. Given 0 ≤ δ ≤ 1, the δ-windows for mea-
sures RD/RR/RC are defined as:

−δ ≤RD ≤ δ
1− δ ≤RR ≤ 1 + δ

1− δ ≤RC ≤ 1 + δ

The standard MAP inference aims at finding values that
maximize the conditional probability of unknowns. Once a
decision is made according to these values, one can use the
fairness measure to quantify the degree of discrimination.
To develop fairness-aware inference, we propose to incor-
porate fairness in MAP inference by adding the δ-fairness
constraints to the underlying optimization problem of MAP
inference.

Consider risk difference, RD, where RD ≡ a
n1
− c

n2
. The

δ-fairness constraint −δ ≤ RD ≤ δ can be encoded as the
following constraints:

n2a− n1c− n1n2δ ≤ 0

n2a− n1c+ n1n2δ ≥ 0

Similarly, from RR ≡ a/n1

c/n2
and the δ-fairness constraint

1− δ ≤ RR ≤ 1 + δ we obtain:

n2a− (1 + δ)n1c ≤ 0

n2a− (1− δ)n1c ≥ 0

And finally, RC ≡ 1−a/n1

1−c/n2
and the δ-fairness constraint

1− δ ≤ RC ≤ 1 + δ gives:

− n2a+ (1 + δ)n1c− δn1n2 ≤ 0

− n2a+ (1− δ)n1c+ δn1n2 ≥ 0

4 Fairness-aware parameter learning
In this section, we first review five measures of fairness from
literature. The difference between these measures and the
ones introduced earlier is that the latter are based on the de-
cision made by an algorithm. To explain these measures, as-
sume that symbols tp, fn, fp, and tn denote true positive,
false negative, false positive, and true negative rate, respec-
tively. Each of the following measures assume that a deci-
sion is fair if the values of some quantity among the pro-
tected and unprotected group are the same:

1. Overall accuracy equality: equal values for
(tp + tn)/(tp + fn + fp + tn). This measure is not com-
monly used because it does not distinguish between the
accuracy for success and failure.

2. Demographic parity: equal marginal distributions
of the predicted classes (tp + fp)/(tp + fn + fp + tn) or
(fn + tn)/(tp + fn + fp + tn) in both groups. This measure
has been criticized as it can lead to highly undesirable de-
cisions (Dwork et al. 2012).



3. Equality of opportunity: equal values for tp/(tp + fn) or
tn/(fp + tn).

4. Conditional use accuracy equality: equal values for
tp/(tp + fp) or tn/(fn + tn).

5. Treatment equality: equal ratio of false negatives and
false positives (i.e., fp/fn or fn/fp) in both groups.
To incorporate these measures in learning the parameters

of a decriminative relational model with joint probability
distribution P (y|x), we first introduce their logical counter-
parts. Let ŷj and yj denote the actual and predicted truth
values for n atoms of interest. We extend the definitions of
tp, fn, fp and tn as:

tp =

n∑
j=1

I(ŷj ∧ yj)

fn =

n∑
j=1

I(ŷj ∧ ¬yj)

fp =

n∑
j=1

I(¬ŷj ∧ yj)

tn =

n∑
j=1

I(¬ŷj ∧ ¬yj)

Fair parameter learning is an optimization problem with
two possibly conflicting goals: 1) to achieve high prediction
power according to the data, and 2) ensuring fair predictions.
The first goal can be for example translated into a high like-
lihood of the data.

In order to achieve the second goal, we add a term to
the objective function that reflects the degree of fairness of
predictions according to known fair truth values for a sub-
set of variables. More specifically, let yPG and yUG de-
note the fair truth values of the target predicate for subsets
of protected and unprotected groups, respectively. Given a
fairness measure M (which can be one of the measures de-
fined above), we aim at decreasing the value of |M(yPG)−
M(yUG)|. Combining these two goals leads to the following
objective function for fairness-aware parameter learning:

max
W

{
logPW (y|x)− γ · EW

[
|M(yp)−M(yu)|

]}
where γ is a positive constant that determines the relative

importance of the two components of the objective function.

5 Conclusion
In this paper, we introduce the notion of fairness in re-
lational setting. We extend MAP inference with fairness-
aware constrained conditional inference subject to com-
mon data-oriented fairness measures. In addition, we pro-
pose a fairness-aware learning algorithm that incorporates
decision-oriented fairness measures to ensure fairness in
learning. We believe that extending fairness to the relational
setting facilitates defining complex discrimination patterns.

Many applications in social network analysis, personalized
advertising, education science, and computational social sci-
ence can benefit from this extension.
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