

Declarative constraint-based
pattern mining:

from modeling to solving

Tias Guns
BUTO, VUB Brussel

Declarative Languages & AI lab, KU Leuven
http://homepages.vub.ac.be/~tiasguns/

DeLBP workshop @ IJCAI 2017

http://homepages.vub.ac.be/~tiasguns/

A.I.

Data
Mining

Constraint
Solving

Itemset mining

Transactions:

1) 7)

2) 8)

3) 9)

4) 10)

5) 11)

6) 12)

Patterns:

{ , } (42%)

{ , } (33%)

{ , } (33%)

{
,

} (50%)

{ ,
, }

(33%)

{ ,
} (33%)

{ , } (42%)

{ } (83%){ } (58%)

{ } (42%)

{ } (50%)

{ } (33%)

{ } (42%)

{ } (42%)

Biological sequence mining

(Discrete) Data mining: methods
Usually specific algorithms for specific problems

Highly scalable, but;
● New problems rarely fit existing

methods well
● Tedious programming & hacks
● Refining solution methods is hard,

even though typical in the knowledge
discovery cycle

Constraint Solving
 “Solving constraint satisfaction/optimization problems”

● Scheduling

● Routing

● Configuration

● Graph problems

Constraint solving: methods
“Combinatorial problem = Model + Solve”

Model = specification of constraints over variables
Solve = search for satisfying/optimal solutions

Many generic and efficient solvers available

OutputSOLVER

T
ranslatio

n

Model

Data

Constraint solving: why data mining?

Modeling
+ Adding/removing/combining constraints
+ Complex constraints
- Modeling choices matter

Solving
+ Reusing solving technology
± Exhaustive, optimal
- Scalability towards large datasets

→ many DM problems are combinatorial problems

Active research directions

● Pattern Mining

● Clustering

● Structure learning

B. Cremilleux, L. De Raedt, T. Guns, T. Guyet, S. Jabbour,
M. Jarvisalo, A. Kemmar, S. Loudni, S. Nijssen, B. O'Sullivan, ...

B. Babaki, I. Davidson, T.B.H. Dao, K.C. Duong, S. Gilpin, V. Grossi,
P. Hansen, O. du Merle, A. Monreale, S. Nijssen, C. Vrain, ...

C. Bessiere, J. Cussens, O. Grinchtein, M. Heule, T. Jaakkola,
M. Meila, B. O'Sullivan, D. Sontag, P. Van Beeck, S. Verwer, ...

In this talk
Modeling: generality

I. Itemset mining and constraints
II. A modeling language for constraint-based mining?

Solving: efficiency
III. Scalability of generic itemset solving
IV. Sequence mining and constraints

Constraint-based
Itemset Mining

● Fundamental enumeration problem
● Well studied
● Many constraints
● Many applications

“Interesting” patterns:
● which patterns appear frequently in a dataset?
● which patterns have a certain structure?
● which patterns have a high cost or profit margin?
● which patterns summarize a dataset?
● which patterns are frequent on one dataset

and infrequent on another?
● which patterns are significant w.r.t. a background model?

→ specified by constraints

“Constraint-based mining”

Frequent Itemset Mining
Find: all sets of items appearing frequently

cover(,) = { , }
frequency(,) = | { , } | = 2

CP for Itemset Mining

coverage:

frequency: ∑t
T t≥Freq

∀T t : T t=1⇔set (I1, ... In)⊆set (rowt)

One solution = one frequent itemset: enumerate all

CP for Itemset Mining

coverage:

frequency: ∀ I i : I i=1⇒∑t
T tDti≥Freq

∀T t : T t=1⇔∑i
I i(1−Dti)=0

[L. De Raedt, T. Guns, S. Nijssen, KDD 2008]

Generality

[L. De Raedt, T. Guns, S. Nijssen, AAAI 2010]

DMCP 30% 25% 20% 15% 10% 5% 1%
0.05

0.5

5

50

500

Minimum support

R
un

tim
e

(s
)

Few constraints Many constraints
 CP

Specialized
systems

}

coverage+frequency

5 15 25 35
0.1

1

10

100

1000

FIM_CP_1%
FIM_CP_5%
FIM_CP_10%
PATTER_1%
PATTER_5%
PATTER_10%
LCM_10%

MaxAvgCost

R
u

n
tim

e
(s

)

 CP

Take away message 1.
Constraint Programming for Itemset Mining:

● Mathematical and reasonably compact encoding
● Generic: many constraints can be expressed
● Effective in case of tight constraints

Many extensions (not in this talk):
– Pattern set mining
– Skypatterns / multi-objective

– SAT, BDD, ASP solvers
[JP. Metivier, P. Boizumault, B. Cremilleux, M. Khiari, S. Loudni, IDA 2012]

[H. Cambazard, T. Hadzi, B. O'Sullivan, ECAI 2010]
[M. Jarvisalo, LPNMR 2011]

[W. Ugarte, P. Boizumault, S. Loudni, B. Cremilleux, ECAI 2014]
[W. Ugarte, P. Boizumault, B. Crémilleux, A. Lepailleur, S. Loudni, M. Plantevit, C. Raïssi, A. Soulet, AIJ 2017]

[T. Guns, S. Nijssen, L. De Raedt, TKDE 2013]
[A. Ouali, S. Loudni, Y. Lebbah, P. Boizumault, A. Zimmermann, L. Loukil, IJCAI 2016]

In this talk
Modeling

I. Itemset mining and constraints
II. A modeling language for constraint-based mining?

Solving
III. Scalability of generic itemset solving
IV. Sequence mining and constraints

A modeling language for pattern mining?
A long standing dream...

Many have roots in “Inductive Databases” idea of Heikki Mannila
→ a database where data and patterns are both easily queried

Projects integrating mining in SQL:
– MINE RULE [Meo et al, 1996]
– MSQL [Imielinksi & Virmani, 1999]
– Mining Views [Blockeel et al, 2012]

Mostly: mining algorithm parameters ↔ query parameters

A modeling language for pattern mining?
A long standing dream...

Others looked at constraint-based languages

– Levelwise [Mannila & Toivonen 1997]
– MusicDFS [Soulet & Cremilleux 2005]
– ConQueSt [Bonchi & Lucchese 2007]

Mostly: based on (anti-)monotonicity of constraints

Little support for other constraints (closed, maximal, discriminative)
or combinations.

Modeling languages in CP

Constraint Programming has long tradition of modeling languages
– ECLiPSe and B-prolog (Constraint Logic Programming)
– OPL [Van Hentenryck, 1999]
– COMET [Van Hentenryck and Michel, 2005]
– MiniZinc [Nethercote et al, 2007]
– Essence [Frisch et al, 2008]

→ CP languages as starting point for pattern mining language

A modeling language for pattern mining?

MiningZinc

● Based on the established MiniZinc language
– High-level mathematical-like notation
– User-defined constraints and functions
– Solver independent (10+ CP solvers & SAT & MIP)

● Modeling: pattern mining specific constrains and functions

● Solving: generic AND specialised methods (transparently)

[T. Guns, A. Dries, S. Nijssen, G. Tack, L. De Raedt, IJCAI 2013]

Example: constrained itemset mining

include ''lib_itemsetmining.mzn''

int: NrI; int: NrT; int: MinFreq; int: MaxFreq;
array[1..NrT] of set of int: TDB;

var set of 1..NrI: Items;

constraint card(cover(Items, TDB)) >= MinFreq;

constraint card(cover(Items, TDB)) <= MaxFreq;

array [1..NrI] of int: Cost;
int: MinCost;

constraint sum(i in Items) (Cost[i]) >= MinCost

solve satisfy;

library with itemset mining specific functions and predicates

Solver independence

From text-based model to ``execution plans'':
1) specialised solvers (if supported constraint combination)

2) automatic post-processing:
– use specialised solver on subset of constraints
– post-process remaining constraints with generic solver

3) generic (CP) solvers

var set of 1..NrI: Items; array[int] of set of int: TDB;
constraint card(cover(Items, TDB)) >= 20;
constraint card(cover(Items, TDB)) =< 40;
solve satisfy;

Experiments, hybrid solving
frequent itemset mining, with minimum size and closure constraint

[T. Guns, A. Dries, S. Nijssen, G. Tack, L. De Raedt, AIJ 2017]

Take away message 2.
Modeling:

● Can build on existing high-level CP languages
● Solver independence:

– Automatic model rewriting
– Automatic chaining of CP/DM algorithms: hybridization

Open questions
● Multiple execution strategies: algorithm selection? parallelism?
● Problems not fitting standard CP

– Skyline patterns / multi-objective
– Dominance / preference over solutions

● Text-based language vs. embedded language

[ModRef workshop, 2002 - present]

[W. Ugarte, P. Boizumault, S. Loudni, B. Cremilleux, ECAI 2014]

[B. Negrevergne, A. Dries, T. Guns, S. Nijssen, ICDM 2013]

In this talk
Modeling

I. Itemset mining and constraints
II. A modeling language for constraint-based mining?

Solving
III. Scalability of generic itemset solving

IV. Sequence mining and constraints

Improving scalability?

35% 30% 25% 20% 15% 10% 5% 1%
0.05

0.5

5

50

500

IM search vs. CP search
● Highly efficient IM algorithms do depth-first search
● CP solver is at its core a principled depth-first search framework

What makes the difference?

Differences IM search / CP search
In pure CP model:

for each transaction a separate constraint
➔ data is split into many individual constraints
➔ CP has to do bookkeeping of constraints and its variables

in IM:
constraints are checked on entire data at once
➔ can use advanced data structures like vertical tidlists
➔ can cache computations (e.g. frequency of each item)

→ keep data together in CP?

CP scalability
Wrote minimalistic CP solver that:

● implements standard generic CP search
● implements BoolVector variable type (bitwise computations)
● supports the generic global constraint

(other constraints could be added as in any CP solver)

Within global constraint:
● can use (core of) same algorithms as specialised methods
● can do efficient bitwise computations and caching

X❑(D A≃B)

35% 30% 25% 20% 15% 10% 5% 1%
0.05

0.5

5

50

500

Splice (Closed)

FIMCP
PATTERNIST
LCM5.3
LCM2.5
MAFIA
B_ECLAT
B_FPGROWTH
B_APRIORI
DMCP

Minimum support

R
un

tim
e

(s
)

Integrated solver
 CP (original)

CP (new solver)

[S. Nijssen, T. Guns, ECMLPKDD 2010]

50% 10% 5% 1% 0.5% 0.1% 0.05% 0.01%
0.05

0.5

5

50

500

T10I4D100K (Frequent)

FIMCP
PATTERNIST
LCM5
LCM2
MAFIA
B_ECLAT
B_FPGROWTH
B_APRIORI
DMCP

Minimum support

R
un

tim
e

(s
)

Frequent Itemset Mining, scaling
 CP (original)

CP (new solver)

[S. Nijssen, T. Guns, ECMLPKDD 2010]

Within standard CP solver
● Standard CP solver
● One global constraint for:

– computing the cover and enforcing minimum frequency
– no need to expose transaction variables 'T'

=> can use (and hide) same datastructures as specialised methods
[N. Lazaar, Y. Lebbah, S. Loudni, M. Maamar, V. Lemière, C. Bessiere, P. Boizumault:, CP 2016]

[P. Chaus, J. Aoga, T. Guns, CP 2017]

Take away message 3.
Difference IM search / CP search

● Both use depth-first search
● IM is one big complicated algorithm
● CP decomposes problem in separate constraints

Increasing efficiency:
● Keep data together in a global constraint
● Bonus: advanced data structures and indexing
● Efficiency versus generality trade-off!

In this talk
Modeling

I. Itemset mining and constraints
II. A modeling language for constraint-based mining?

Solving
III. Scalability of generic itemset solving
IV. Sequence mining and constraints

Sequential data
Example:
 <Home, Work, Restaurant, Work, Home>
 <Home, Work, Shops, Restaurant, Home>
 ...

Many applications:
● User mobility mining
● Web usage mining
● Event monitoring
● Biological sequence mining

(DNA, Amino acids)
● ...

Sequence mining
 Pattern: <H, G, ?, ?, ?>

 T1: <S,B,H,R,G,H,M>

 T2: <S,G,H,W,L,W,M>

 T3: <R,H,W,H,D,G,H>

multiple embeddings possible:
 T3: <R,H,W,H,D,G,H>

Cover
= subsequence relation
= ordered matching

Why CP?
Many constraints, we identify four categories:

● Constraints on syntax:
size, regular expr., …

● Constraints on data:
min_freq, max_freq, discriminative, …

● Preferences over the solution set
closed, maximal, relevant, multi-objective, ...

● new Constraints on inclusion relation:
max_gap, min_gap, max_span

Hard-coded in specialised algorithms...

Standard sequences
 X = <Home, Work, Restaurant, Gym, Work, Home>

Example sequence P=<Home,Home>
● can have arbitrary symbols before/between/after
● ex: <Home, Work, Restaurant, Gym, Work, Home>

● Formally:

● In CP: One variable for each e_j , multiple constraints?

T=1⇔∃(e1 ..en): e1<...<en∧∀ j P [j]=X [e j]

What specialized algorithms do
 P: <H, H, ?, ?, ?>
 T1: <R,H,W,H,G,D,H>

 T2: <S,B,H,R,G,H,M>

PrefixSpan:
● Linear scan of each transaction, keep only pointer to

first match of last symbol
● When symbol added to P, continue from pointer (incremental)
● O(1) space, O(n) algorithm

In CP, O(n) e_j variables and multiple constraints over them?

in CP: add global constraint

Global constraint with filtering algorithm:
●

● incremental: keep one pointer to last assigned match ej

∑t
T t≥Freq

∀T t : T t=1⇔exist−embedding(S, X t)

T t=1⇔∃(e1 ..en): e1<...<en∧∀ j S[j]=X t [e j]

[B. Negrevergne, T. Guns, CPAIOR 2015]

Keeping data together
One global constraint for all sequences:

● algorithmic improvements: last position map, last position list
→ precomputed and cached, speedups

● use backtracking-aware datastructure
→ stores cover and prefix point in reversible vector

[J. Aoga, T. Guns, P. Chaus, ECMLPKDD 2016]

Efficiency: outperforms specialised!

Improving generality
Constraints:

● Constraints on sequence: compatible
● Constraints on cover set: compatible
● Preferences over the solution set: compatible
● Constraints on inclusion relation: not compatible

=> best known: min/max gap and span
 gap: 1 gap: 2

 <Home, Work, Restaurant, Gym, Work, Home, Bar>
 span: 4
can modify the global cover constraint to also enforce gap/span
→ improves state-of-the-art (with backtrack-aware datastructure)

[J. Aoga, T. Guns, P. Chaus, CPAIOR 2017]

Constraints

Take away message 4.
Sequence mining: more complex coverage relation

Global constraint:
● hides complexity of coverage relation
● fast (incremental, PrefixSpan-like)
● good way to hybridize with data mining techniques

=> necessary to be efficient

Even more efficient with backtracking-aware datastructures

Wrap-up
Finding the right level of abstraction:

● Modeling:
– not query but set of constraints
– solver/algorithm independence
– automatic rewrite rules

● Solving:
– each constraint can be made independent
– vectorize constraints to increase efficiency (internal data structures)
– CP as framework for pattern mining

Questions?

Data
Mining

Constraint
Solving

Thanks to
collaborators:
● L. De Raedt
● S. Nijssen
● A. Dries
● B. Negrevergne
● J. Aoga
● P. Chaus
● T. Le Van
● S. Paramonov
● B. Babaki
● A. Zimmermann
● G. Tack
● K. Marchal
● H. Sun
● A. Jiminez

For more pointers, see:
AIJ Special Issue March 2017: Combining Constraint Solving with Mining and Learning
IJCAI 2017 tutorial: Data Mining and Machine Learning using Constraint Programming Languages

