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Outline
● The basic components of Data science
● Why declarative?
● Why relational?
● The current status of data science
● Fixing the problems
● Interfacing solvers to databases
● Building Solvers in database
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The basic ingredients of data science
● Data transformations
● Machine Learning
● Deployment
● Model analysis
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The excel syndrome
● Back in the 80/90s people suffered from the Excel Syndrome
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Data Frame the new excel syndrome
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Pros
● Easy view of the data
● Easy filtering
● Easy selection of columns
● Easy conversion to arrays
● Data inspection is one of the most 

common tasks in datascience
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Cons
● Real life queries are much more complex
● They make small data look very big
● Adds another level of complexity on the systems architecture
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Why do databases want to look like dataframes?
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But maybe ML should want to look like a database
Databases are inherently declarative

So we need a declarative platform for machine learning 
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Declarative vs Imperative Machine 
Learning
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Imperative Machine Learning
● Step by step description of the learning algorithm implementation.
● Explicit memory management by scientist
● Resource management  by scientist
● Order matters!!!!
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What is problematic about imperative programming?
● Performance optimization and semantics are entangled
● It is very hard to add new components on an algorithm
● What can these components be?
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Declarative Machine Learning abstractions
● Neural Networks
● Convex optimization
● Probabilistic Programming

13



Operators
● Objective
● Constraints
● Generators 

○ Linear Algebra
○ Sample Generators

● Gradients
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Declarative Platforms
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Did machine learning become easier?
● YES
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Did data science become easier?
No, we still need a data frame

The MLP code for a retail problem that has data in 10 different tables is about 10x 
bigger and 100x slower

What did we miss here?
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Observation

Denormalizing relational data is not wise. …

“We need a machine learning system that works on the relational domain”
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Attempts to do machine learning in the database
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The UDF approach
● SIGMOD 2017 Tutorial Data Management in Machine Learning
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http://sigmod2017.org/wp-content/uploads/2017/03/09-Data-Management-in-Machine-Learning.pdf


The factorized approach
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● SIGMOD 2017 Tutorial Data Management in Machine Learning

http://sigmod2017.org/wp-content/uploads/2017/03/09-Data-Management-in-Machine-Learning.pdf


Why did they all fail?
● More or less they are a systems integration  (UDF approach) and not an 

algorithmic integration
● The operators were limited 
● Difficult to add new operators
● Data operations and ML require a different language 
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Expressing data relations and ML 
algorithms in the same language
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And the language is … 
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Expressing and computing data queries
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An example
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Expressing optimization problems
// entities

FOOD(f), FOOD_id(f:s) -> string(s).

NUTR(n), NUTR_id(n:s) -> string(s).

// predicates populated in the database

amt[n, f] = v -> NUTR(n), FOOD(f), float(v).

nutrLow[n] = v -> NUTR(n), float(v).

cost[f] = v -> FOOD(f), float(v).

// unknown predicate

Buy[f] = v -> FOOD(f), float(v).

lang:solver:variable(`Buy).

// objective function and target (minimize)

objective[] = v -> float(v).

objective[] = v <- agg << v=total(z) >>

FOOD(f), cost[f] = v1, Buy[f] = v2, z = v1*v2.

lang:solver:minimal(`objective).
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// constraints

NUTR(n), totalNutr[n] = v1, nutrLow[n] = v2 -> v1 >= v2.

// more predicate definitions

totalNutr[n] = v -> NUTR(n), float(v).

totalNutr[n] = v <- agg << v = total(z) >>

NUTR(n), FOOD(f),

amt[n, f] = v1, Buy[f] = v2, z = v1*v2.



Expressing ML problems as Convex Optimization
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Other approaches
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How efficient is this?
● Managed to express data relations and ML operations in the same language
● Translated the problem to its algebraic representation (Grounding)
● But we still denormalized in the end the database
● Can we do anything about that?
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Lifting 
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Relational Linear Programs, Kersting et.al 



Does not solve the problem completely
It requires temporary denormalization but the final matrix is small

There are tricks that can save temporary memory 
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Observation

We need to build a framework for mathematical operations in the relational domain
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Building solvers in the database
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USE CASE: LINEAR ALGEBRA
LogiQL – linear algebra via relational programming

vecA[x] = vecB[x] + vecC[x] + c[]. // pointwise addition

vecA[x] = vecB[x] * vecC[x]. // pointwise multiplication

scalar[] += vecB[x] * vecC[x]. // dot product

matA[x, y] = vecB[x] * vecC[y]. // vector multiplication

matA[x, y]  = matB[x, y] + matC[x, y]. // matrix addition

matA[x, y] += matB[x, t] * matC[t, y]. // matrix multiplication
August 15, 2017 35



USE CASE: LINEAR ALGEBRA
LogiQL – basic feed-forward neural network

out[Node] = sigmoid[in[Node]]. 

sigmoid[X] = 1/(1+exp[-X]).   

in[Node] += weight[Node,Child]*out[Child]. 

in[Node] += input[Node].

error += (out[Node]-target[Node])**2. 

August 15, 2017 36



FAQ 
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Toy Query 1
_f(x) <- int:range(1,100,1,x).  // n = 100

R[] = n <- agg << n=count() >> 

           _f(x), _f(y), _f(z), _f(w).

n With InsideOut Without InsideOut

100 0.0665121 16.6821

1000 0.0605559 Killed after 1 hour

10000 0.092855
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InsideOut Rewrite
_CNT_a[] = a <- agg<<a = count()>> _f(z). 
_CNT_b[] = b <- agg<<b = count()>> _f(y). 
_CNT_c[] = c <- agg<<c = count()>> _f(x). 
_CNT_d[] = d <- agg<<d = count()>> _f(w). 

S[]=n <-

    _CNT_a[] = a,

    _CNT_b[] = b,

    _CNT_c[] = c,

    _CNT_d[] = d,

    int:multiply[c, d]   = cd,

    int:multiply[b, cd]  = bcd,

    int:multiply[a, bcd] = abcd,

    int:eq_2(n, abcd).
39



What Did InsideOut Exploit?

R[] = n <- agg << n=count() >> 
      _f(x), _f(y), _f(z), _f(w).

Independence!

_f(x) _f(y) _f(z) _f(t)

Gather & multiply results
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Toy Query 2
_f(x) <- int:range(1,100,1,x).  // n = 100

R[] = n <- agg << n=count() >> 

           _f(x), _f(y), _f(z), _f(w),
           x < y < z < w.

n With InsideOut Without InsideOut

100 0.137632 1.19114

1000 0.450424 ?

10000 25.6839 ?
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InsideOut Rewrite
_count_x[y] = num_x <-
    agg<<numx = count()>>
       _f(x),
       _f(y),
       x < y.

_count_w[z] = num_w <-
    agg<<num_w = count()>>
       _f(z),
       _f(w),
       z < w.

T[] = n <- agg<<n = total(xw)>>
       y < z,
       _count_x[y] = num_x,
       _count_w[z] = num_w,
       int:multiply[num_x, num_w] = xw.
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What did it take advantage of?
Conditional Independence!

_f(x), _f(y),
x < y

_f(z), _f(w),
z < w

R[] = n <- agg << n=count() >> 

           _f(x), _f(y), _f(z), _f(w),
           x < y < z < w.

_f(y), _f(z), y < z,
_count_x[y] = num_x,
_count_w[z] = num_w,
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Tree Decomposition
• Rudolf Halin (1976)
• Neil Robertson and Paul Seymour (1984) – rediscovered

• Widely used in 
• Query optimization (?!)
• CSP
• Machine learning
• Algorithm design (even for NP-hard problems)
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R[] = n <- agg<<n = count()>> 

R1(a,b,d), c<d, R2(c,b,d), 

R3(b,e), R4(c,e), b+e=f, R5[b,e] = g, g/f = h,

R7(i,j,h), R8(e,g), e*g=b, e-b=h.

           

R5[b,e] = g

What is a Tree Decomposition (TD)?
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x

R[] = n <- agg<<n = count()>> F(x), F(y), F(z), F(w).

F(x)

Example 1:

y z w
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x

 R[] = n <- agg << n=count() >> 

F(x), F(y), F(z), F(w),

 x < y < z < w.

F(x)

Example 2:

wx < y zy z < w

zy
y < z
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ab

R[] = c <- agg<<c = count()>> E(a,b), E(a,c), E(b,d), 
E(b,e), E(c,f), E(c,g), E(d,h), E(d,i), E(e,j), E(e,k), 
E(f,l), E(f, m), E(g,n), E(g,o), V1(h), V2(i), V3(j), 
V4(k), V5(l), V6(m), V7(n), V8(o).

Example 3: a big tree-like query

bd be

dh di ej ek

ac

cf cg

fe fm gn go
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def

R[] = t <-
        agg<<t = count()>>

E(a,b), E(a,c), E(b,c), 
E(c,d), 
E(d,e), E(d,f), E(e,f).

Example 4: dumbbell

cdabc
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Example 6: Hidden Markov Model
s1 s2 sk sT

y1 y2 yk yT

s1 s2

s1
y1

s2 s3

s2
y2

sk sk+1

sk
yk

sT

sT
yT
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Example 4: dumbbell, O(N3/2) vs. O(N3)
Graph With InsideOut Without InsideOut

facebook 4.37485 1608.97

loc-brightkite 1.03651 174.984

email-Enron 3.57298 562.598

wiki-vote 1.65755 1047.16
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Example 5: 4-path query, O(N) vs O(N3)

Data set With InsideOut Without Speedup ratio

email-Enron 0.293187 8393.72 28,629

facebook 0.226596 3468.08 15,305

loc-brightkite 0.385222 1432.24 3,717

wiki-vote 0.165675 20736.6 125,164
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Belief Propagation (will reach a fixed point!)

Asynchronous
message passing

_U[b,c,e]     = u         // (also called clique tree, junction tree) 

_V[a,b,c,d]   = v         // after MPs, factors in calibrated state!

_R[b,e,f,g,h] = r         // Under Boolean Semiring, it means

_S[h,i,j]     = s         // _U = projection of output onto {b,c,e}

_T[e,g,h,k]   = t         // _V, _R, _S, _T = proj of output ... 

R

S T

U

V

In PGM, we can query for a gazillion things here, e.g.
+ What’s the marginal probability on two variables {b,e}?
+ What’s the {b,e} that has the maximum marginal probability? 53



HMM: Forward-backward & Viterbi

s1 
s2

s
1
y
1

s2 
s3

s
2
y
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sk 
sk+1

sk
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sT

sT
yT

Asynchronous
message passing
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Typical Example: Q10

_lostRevenue[customer] = r <-
   agg<< r = total(revenue) >>
      revenue = decimal:multiply[L_EXTENDEDPRICE[order, li],
                decimal:subtract[_one[], L_DISCOUNT[order, li]]],
      O_ORDERDATE[order]=orderdate,
      _date[] <= orderdate < _endDate[],
      L_RETURNFLAG[order, li] = RF_NAME_INV["R"],
      customer = O_CUSTKEY[order].
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Typical Example: Q10
 _CONJ_1ZVGA58Q[order]=customer <-
    O_ORDERDATE[order]=orderdate,
    datetime:le_2(t_Zdd2gZ4_QGJ,t_Zdd2gZ4_QEl),
    _date[]=t_Zdd2gZ4_QGJ,
    datetime:eq_2(orderdate,t_Zdd2gZ4_QEl),
    datetime:lt_2(t_Zdd2gZ4_QEl,t_Zdd2gZ4_QGK),
    _endDate[]=t_Zdd2gZ4_QGK,
    O_CUSTKEY[order]=customer.

 _PRJ_1ZVGCXHS(order) <- _CONJ_1ZVGA58Q[order]=customer.

 _TOT_1ZVGGU6O[order]=Var_1ZVGEZOY <-    agg<<Var_1ZVGEZOY = total(revenue)>>
       decimal:multiply[t_Zdd2gZ4_QGF,t_Zdd2gZ4_QGI]=revenue,
       L_EXTENDEDPRICE[order,li]=t_Zdd2gZ4_QGF,
       decimal:subtract[t_Zdd2gZ4_QGG,t_Zdd2gZ4_QGH]=t_Zdd2gZ4_QGI,
       _one[]=t_Zdd2gZ4_QGG,
       L_DISCOUNT[order,li]=t_Zdd2gZ4_QGH,
       L_RETURNFLAG[order,li]=t_Zdd2gZ4_QGL,
       RF_NAME_INV[t_Zdd2gZ4_QGa]=t_Zdd2gZ4_QGL,
       string:eq_2(t_Zdd2gZ4_QGa,"R"),
       _PRJ_1ZVGCXHS(order).

 _lostRevenue[customer]=r <-    agg<<r = total(Var_1ZVGEZOY)>>
       _CONJ_1ZVGA58Q[order]=customer,
       _TOT_1ZVGGU6O[order]=Var_1ZVGEZOY.
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In DB model training
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More detailed
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Even more details

59



LINEAR REGRESSION
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POLYNOMIAL REGRESSION
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FACTORIZATION MACHINES

62



Conclusions

• Efficient datascience requires convergence to one universal 
language

• ML, DB, etc have to co-exist
• Datalog is a good candidate but not the only one
• Algorithms should move beyond the input matrix paradigm
• Input =  Data + Programs (joins)
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