
Towards end to end in db
data science

Nikolaos Vasiloglou

1

Outline
● The basic components of Data science
● Why declarative?
● Why relational?
● The current status of data science
● Fixing the problems
● Interfacing solvers to databases
● Building Solvers in database

2

The basic ingredients of data science
● Data transformations
● Machine Learning
● Deployment
● Model analysis

3

The excel syndrome
● Back in the 80/90s people suffered from the Excel Syndrome

4

Data Frame the new excel syndrome

5

Pros
● Easy view of the data
● Easy filtering
● Easy selection of columns
● Easy conversion to arrays
● Data inspection is one of the most

common tasks in datascience

6

Cons
● Real life queries are much more complex
● They make small data look very big
● Adds another level of complexity on the systems architecture

7

Why do databases want to look like dataframes?

8

But maybe ML should want to look like a database
Databases are inherently declarative

So we need a declarative platform for machine learning

9

Declarative vs Imperative Machine
Learning

10

Imperative Machine Learning
● Step by step description of the learning algorithm implementation.
● Explicit memory management by scientist
● Resource management by scientist
● Order matters!!!!

11

What is problematic about imperative programming?
● Performance optimization and semantics are entangled
● It is very hard to add new components on an algorithm
● What can these components be?

12

Declarative Machine Learning abstractions
● Neural Networks
● Convex optimization
● Probabilistic Programming

13

Operators
● Objective
● Constraints
● Generators

○ Linear Algebra
○ Sample Generators

● Gradients

14

Declarative Platforms

15

Did machine learning become easier?
● YES

16

Did data science become easier?
No, we still need a data frame

The MLP code for a retail problem that has data in 10 different tables is about 10x
bigger and 100x slower

What did we miss here?

17

Observation

Denormalizing relational data is not wise. …

“We need a machine learning system that works on the relational domain”

18

Attempts to do machine learning in the database

19

The UDF approach
● SIGMOD 2017 Tutorial Data Management in Machine Learning

20

http://sigmod2017.org/wp-content/uploads/2017/03/09-Data-Management-in-Machine-Learning.pdf

The factorized approach

21

● SIGMOD 2017 Tutorial Data Management in Machine Learning

http://sigmod2017.org/wp-content/uploads/2017/03/09-Data-Management-in-Machine-Learning.pdf

Why did they all fail?
● More or less they are a systems integration (UDF approach) and not an

algorithmic integration
● The operators were limited
● Difficult to add new operators
● Data operations and ML require a different language

22

Expressing data relations and ML
algorithms in the same language

23

And the language is …

24

Expressing and computing data queries

25

An example

26

Expressing optimization problems
// entities

FOOD(f), FOOD_id(f:s) -> string(s).

NUTR(n), NUTR_id(n:s) -> string(s).

// predicates populated in the database

amt[n, f] = v -> NUTR(n), FOOD(f), float(v).

nutrLow[n] = v -> NUTR(n), float(v).

cost[f] = v -> FOOD(f), float(v).

// unknown predicate

Buy[f] = v -> FOOD(f), float(v).

lang:solver:variable(`Buy).

// objective function and target (minimize)

objective[] = v -> float(v).

objective[] = v <- agg << v=total(z) >>

FOOD(f), cost[f] = v1, Buy[f] = v2, z = v1*v2.

lang:solver:minimal(`objective).

27

// constraints

NUTR(n), totalNutr[n] = v1, nutrLow[n] = v2 -> v1 >= v2.

// more predicate definitions

totalNutr[n] = v -> NUTR(n), float(v).

totalNutr[n] = v <- agg << v = total(z) >>

NUTR(n), FOOD(f),

amt[n, f] = v1, Buy[f] = v2, z = v1*v2.

Expressing ML problems as Convex Optimization

28

Other approaches

29

How efficient is this?
● Managed to express data relations and ML operations in the same language
● Translated the problem to its algebraic representation (Grounding)
● But we still denormalized in the end the database
● Can we do anything about that?

30

Lifting

31

Relational Linear Programs, Kersting et.al

Does not solve the problem completely
It requires temporary denormalization but the final matrix is small

There are tricks that can save temporary memory

32

Observation

We need to build a framework for mathematical operations in the relational domain

33

Building solvers in the database

34

USE CASE: LINEAR ALGEBRA
LogiQL – linear algebra via relational programming

vecA[x] = vecB[x] + vecC[x] + c[]. // pointwise addition

vecA[x] = vecB[x] * vecC[x]. // pointwise multiplication

scalar[] += vecB[x] * vecC[x]. // dot product

matA[x, y] = vecB[x] * vecC[y]. // vector multiplication

matA[x, y] = matB[x, y] + matC[x, y]. // matrix addition

matA[x, y] += matB[x, t] * matC[t, y]. // matrix multiplication
August 15, 2017 35

USE CASE: LINEAR ALGEBRA
LogiQL – basic feed-forward neural network

out[Node] = sigmoid[in[Node]].

sigmoid[X] = 1/(1+exp[-X]).

in[Node] += weight[Node,Child]*out[Child].

in[Node] += input[Node].

error += (out[Node]-target[Node])**2.

August 15, 2017 36

FAQ

37

Toy Query 1
_f(x) <- int:range(1,100,1,x). // n = 100

R[] = n <- agg << n=count() >>

 _f(x), _f(y), _f(z), _f(w).

n With InsideOut Without InsideOut

100 0.0665121 16.6821

1000 0.0605559 Killed after 1 hour

10000 0.092855

38

InsideOut Rewrite
_CNT_a[] = a <- agg<<a = count()>> _f(z).
_CNT_b[] = b <- agg<<b = count()>> _f(y).
_CNT_c[] = c <- agg<<c = count()>> _f(x).
_CNT_d[] = d <- agg<<d = count()>> _f(w).

S[]=n <-

 _CNT_a[] = a,

 _CNT_b[] = b,

 _CNT_c[] = c,

 _CNT_d[] = d,

 int:multiply[c, d] = cd,

 int:multiply[b, cd] = bcd,

 int:multiply[a, bcd] = abcd,

 int:eq_2(n, abcd).
39

What Did InsideOut Exploit?

R[] = n <- agg << n=count() >>
 _f(x), _f(y), _f(z), _f(w).

Independence!

_f(x) _f(y) _f(z) _f(t)

Gather & multiply results

40

Toy Query 2
_f(x) <- int:range(1,100,1,x). // n = 100

R[] = n <- agg << n=count() >>

 _f(x), _f(y), _f(z), _f(w),
 x < y < z < w.

n With InsideOut Without InsideOut

100 0.137632 1.19114

1000 0.450424 ?

10000 25.6839 ?

41

InsideOut Rewrite
_count_x[y] = num_x <-
 agg<<numx = count()>>
 _f(x),
 _f(y),
 x < y.

_count_w[z] = num_w <-
 agg<<num_w = count()>>
 _f(z),
 _f(w),
 z < w.

T[] = n <- agg<<n = total(xw)>>
 y < z,
 _count_x[y] = num_x,
 _count_w[z] = num_w,
 int:multiply[num_x, num_w] = xw.

42

What did it take advantage of?
Conditional Independence!

_f(x), _f(y),
x < y

_f(z), _f(w),
z < w

R[] = n <- agg << n=count() >>

 _f(x), _f(y), _f(z), _f(w),
 x < y < z < w.

_f(y), _f(z), y < z,
_count_x[y] = num_x,
_count_w[z] = num_w,

43

Tree Decomposition
• Rudolf Halin (1976)
• Neil Robertson and Paul Seymour (1984) – rediscovered

• Widely used in
• Query optimization (?!)
• CSP
• Machine learning
• Algorithm design (even for NP-hard problems)

44

a

c

b

b
e

c

d

e

g
b

f

i
h

j g

e h

b

h

R[] = n <- agg<<n = count()>>

R1(a,b,d), c<d, R2(c,b,d),

R3(b,e), R4(c,e), b+e=f, R5[b,e] = g, g/f = h,

R7(i,j,h), R8(e,g), e*g=b, e-b=h.

R5[b,e] = g

What is a Tree Decomposition (TD)?

45

x

R[] = n <- agg<<n = count()>> F(x), F(y), F(z), F(w).

F(x)

Example 1:

y z w

46

x

 R[] = n <- agg << n=count() >>

F(x), F(y), F(z), F(w),

 x < y < z < w.

F(x)

Example 2:

wx < y zy z < w

zy
y < z

47

ab

R[] = c <- agg<<c = count()>> E(a,b), E(a,c), E(b,d),
E(b,e), E(c,f), E(c,g), E(d,h), E(d,i), E(e,j), E(e,k),
E(f,l), E(f, m), E(g,n), E(g,o), V1(h), V2(i), V3(j),
V4(k), V5(l), V6(m), V7(n), V8(o).

Example 3: a big tree-like query

bd be

dh di ej ek

ac

cf cg

fe fm gn go

48

def

R[] = t <-
 agg<<t = count()>>

E(a,b), E(a,c), E(b,c),
E(c,d),
E(d,e), E(d,f), E(e,f).

Example 4: dumbbell

cdabc

49

Example 6: Hidden Markov Model
s1 s2 sk sT

y1 y2 yk yT

s1 s2

s1
y1

s2 s3

s2
y2

sk sk+1

sk
yk

sT

sT
yT

50

Example 4: dumbbell, O(N3/2) vs. O(N3)
Graph With InsideOut Without InsideOut

facebook 4.37485 1608.97

loc-brightkite 1.03651 174.984

email-Enron 3.57298 562.598

wiki-vote 1.65755 1047.16

51

Example 5: 4-path query, O(N) vs O(N3)

Data set With InsideOut Without Speedup ratio

email-Enron 0.293187 8393.72 28,629

facebook 0.226596 3468.08 15,305

loc-brightkite 0.385222 1432.24 3,717

wiki-vote 0.165675 20736.6 125,164

52

a

c

b

b
e

c d
e

g
b

f

i
h
j g

e h
k

h

Belief Propagation (will reach a fixed point!)

Asynchronous
message passing

_U[b,c,e] = u // (also called clique tree, junction tree)

_V[a,b,c,d] = v // after MPs, factors in calibrated state!

_R[b,e,f,g,h] = r // Under Boolean Semiring, it means

_S[h,i,j] = s // _U = projection of output onto {b,c,e}

_T[e,g,h,k] = t // _V, _R, _S, _T = proj of output ...

R

S T

U

V

In PGM, we can query for a gazillion things here, e.g.
+ What’s the marginal probability on two variables {b,e}?
+ What’s the {b,e} that has the maximum marginal probability? 53

HMM: Forward-backward & Viterbi

s1
s2

s
1
y
1

s2
s3

s
2
y
2

sk
sk+1

sk
yk

sT

sT
yT

Asynchronous
message passing

54

Typical Example: Q10

_lostRevenue[customer] = r <-
 agg<< r = total(revenue) >>
 revenue = decimal:multiply[L_EXTENDEDPRICE[order, li],
 decimal:subtract[_one[], L_DISCOUNT[order, li]]],
 O_ORDERDATE[order]=orderdate,
 _date[] <= orderdate < _endDate[],
 L_RETURNFLAG[order, li] = RF_NAME_INV["R"],
 customer = O_CUSTKEY[order].

55

Typical Example: Q10
 _CONJ_1ZVGA58Q[order]=customer <-
 O_ORDERDATE[order]=orderdate,
 datetime:le_2(t_Zdd2gZ4_QGJ,t_Zdd2gZ4_QEl),
 _date[]=t_Zdd2gZ4_QGJ,
 datetime:eq_2(orderdate,t_Zdd2gZ4_QEl),
 datetime:lt_2(t_Zdd2gZ4_QEl,t_Zdd2gZ4_QGK),
 _endDate[]=t_Zdd2gZ4_QGK,
 O_CUSTKEY[order]=customer.

 _PRJ_1ZVGCXHS(order) <- _CONJ_1ZVGA58Q[order]=customer.

 _TOT_1ZVGGU6O[order]=Var_1ZVGEZOY <- agg<<Var_1ZVGEZOY = total(revenue)>>
 decimal:multiply[t_Zdd2gZ4_QGF,t_Zdd2gZ4_QGI]=revenue,
 L_EXTENDEDPRICE[order,li]=t_Zdd2gZ4_QGF,
 decimal:subtract[t_Zdd2gZ4_QGG,t_Zdd2gZ4_QGH]=t_Zdd2gZ4_QGI,
 _one[]=t_Zdd2gZ4_QGG,
 L_DISCOUNT[order,li]=t_Zdd2gZ4_QGH,
 L_RETURNFLAG[order,li]=t_Zdd2gZ4_QGL,
 RF_NAME_INV[t_Zdd2gZ4_QGa]=t_Zdd2gZ4_QGL,
 string:eq_2(t_Zdd2gZ4_QGa,"R"),
 _PRJ_1ZVGCXHS(order).

 _lostRevenue[customer]=r <- agg<<r = total(Var_1ZVGEZOY)>>
 _CONJ_1ZVGA58Q[order]=customer,
 _TOT_1ZVGGU6O[order]=Var_1ZVGEZOY.

56

In DB model training

57

More detailed

58

Even more details

59

LINEAR REGRESSION

60

POLYNOMIAL REGRESSION

61

FACTORIZATION MACHINES

62

Conclusions

• Efficient datascience requires convergence to one universal
language

• ML, DB, etc have to co-exist
• Datalog is a good candidate but not the only one
• Algorithms should move beyond the input matrix paradigm
• Input = Data + Programs (joins)

63

