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The excel syndrome

e Back in the 80/90s people suffered from the Excel Syndrome

I once worked for a manager who suffered from the Excel syndrome. Despite knowing what a database was (the company was one he created and MD of, and was in the
field of IT support, so one would hope that was the case at least as most of the clients had SBS systems that used MS SQL Server) he insisted on the mailing "database"
to be managed in spreadsheets. This was back when Microsoft though we'd only ever need a maximum of 65535 rows in a spreadsheet, and the mailing list was often
much larger than that. So what was the solution? Well, when you hit the limit, just create a new spreadhseet of course (note that he didn't actually want to use separate
sheets within the one file, each spreadsheet was its own file on the server)

Oh and of course the list had to be alphabetically organised (by some column | forget now) so that when a new entry had to be entered into a spreadsheet that was
already full, entry 65536 and above had to be popped into the next file in the series, repeated as necessary if that was full too, etc.

I did suggest using a proper database for this but he was of the mind that it wouldn't be simple enough for the non-technical secretarial staff to handle. That manager
was probably one of the sources of the most IT WTFery I've seen in years, made more funny by the fact that he was supposedly technically adept and the company was
responsible for the IT support of a lot of businesses in the area.



Data Frame the new excel syndrome
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Pros

Easy view of the data

Easy filtering

Easy selection of columns

Easy conversion to arrays

Data inspection is one of the most
common tasks in datascience
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Cons

e Real life queries are much more complex
e They make small data look very big
e Adds another level of complexity on the systems architecture



Why do databases want to look like dataframes?

Hive Data Ways To Create DataFrame in Spark
CSV data DataFrame

Coll Col2 Col3

Json Data g 4‘3’
RDBMS D{-}V por K SQL Row 1

XML data : g
Parquet Da
Row 3

Cassandr4 Data

RDDs
Select * from CsyData INNER JOIN JsonData on C8Vdata.id = JsonData.id

www.bigdataanalyst.in



But maybe ML should want to look like a database

Databases are inherently declarative

So we need a declarative platform for machine learning



Declarative vs Imperative Machine
Learning
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Imperative Machine Learning

Step by step description of the learning algorithm implementation.
Explicit memory management by scientist

Resource management by scientist

Order matters!!!!
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What is problematic about imperative programming?

e Performance optimization and semantics are entangled
e Itis very hard to add new components on an algorithm
e \What can these components be?

12



Declarative Machine Learning abstractions

Neural Networks

Convex optimization
Probabilistic Programming

convex
Optimization

Hello Uncertain World

string A = random new Uniform<string>();

string B = random new Uniform<string>();
string € = A+" "+B;

constrain (C == "Hello Uncertain World");
infer (A)

// 50%: "Hello", 50%: "Hello Uncertain"
infer (B)

/{ 50%: ™uhgertaln World™; 50%: “Woerld"

hidden layer 1

";6

:
va

;

Va

SRS
(N & 5
/ tput layer

input layer

hidden layer 2
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Operators

e Objective
e Constraints

e Generators

o Linear Algebra
o Sample Generators

e Gradients
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Declarative Platforms
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Did machine learning become easier?

e YES

def MLP(inputs):
= tf.Variable{tf.random_normall [784, 25&8]))
b_1 = tf.Variable(tf.zeros{[256]))

W 2 = tf.Variable(tf.random _normal{ [256, 258]))
b 2 = tf.Variable(tf.zeros([256]))

W out = tf.Variablel(tf.random_normal([256, 181))
b_out = tf.Variable(tf.zeros([10]))

h 1 = tf.add(tf.matmul{inputs, W_1), b_1)

h 1= tf.nn.relu(h_1)

h 2 = tf.add(tf.matmul{h_1, W_2), b_2)

h 2 = tf.nn.relu{h_2)

out = tf.add{tf.matmul(h_2, W _out), b_out)

return out
net = MLP(x)

# define loss and optimizer

loss_op = tf.reduce_mean|
tf.nn.softmax_cross_entropy_with_logits(net, y))

opt = tf.train.AdamOptimizer(learning_rate).minimize(loss_op)

16



Did data science become easier?

No, we still need a data frame

The MLP code for a retail problem that has data in 10 different tables is about 10x
bigger and 100x slower

What did we miss here?
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Observation

Denormalizing relational data is not wise. ...

“We need a machine learning system that works on the relational domain”

18



Attempts to do machine learning in the database

19



The UDF approach

e SIGMOD 2017 Tutorial Data Management in Machine Learning

Matrix Multiply: Take 1

» Data: A(i,j,val),B(i,j,val) MAD Skills [VLDB'09]
— Basically a sparse representation

» SELECT A.i, B.j, SUM(A.val*B.val)

FROM A, B
A

WHERE A.j = B.1i
GROUP BY A.i, B.j;

= Not so good for dense matrices, but still beats “small-data” platforms

when data doesn’t fit in memory

B.j

= Works pretty well for sparse matrices


http://sigmod2017.org/wp-content/uploads/2017/03/09-Data-Management-in-Machine-Learning.pdf

The factorized approach

e SIGMOD 2017 Tutorial Data Management in Machine Learning

Overview: Learning Over Joins

Problem: Many datasets _ ML toolkits assume __ ML after

are multi-table single-table inputs joining tables
main Lam . EEEEE Overheads:
Joins Extra storage
—) Computational redundancy
Join time

Maintenance headaches

Learning Over Joins: “Push Down” ML through joins

1) Over standard data systems: Orion, Santoku, Morpheus
2) Over a “factorized database” system: FDB-F

3) Special-purpose tools: libFM, TensorDB, Compressed ML

21


http://sigmod2017.org/wp-content/uploads/2017/03/09-Data-Management-in-Machine-Learning.pdf

Why did they all fail?

More or less they are a systems integration (UDF approach) and not an
algorithmic integration

The operators were limited

Difficult to add new operators

Data operations and ML require a different language

22



Expressing data relations and ML
algorithms in the same language



And the language is ...

DATALOG

24



Expressing and computing data queries

LogicBlox

Leapfrog Triejoin: A Simple, Worst-Case Optimal Join
Algorithm

Todd L. Veldhuizen
LogicBlox Inc.
Two Midtown Plaza
1349 West Peachtree Street NW
Suite 1880, Atlanta GA 30309

tveldhui@{logicblox.com,acm.org}

ABSTRACT

Recent years have seen exciting developments in join al-
gorithms. In 2008, Atserias, Grohe and Marx (henceforth
AGM) proved a tight bound on the maximum result size of
a full conjunctive query, given constraints on the input rela-
tion sizes. In 2012, Ngo, Porat, Ré and Rudra (henceforth
NPRR) devised a join algorithm with worst-case running
time proportional to the AGM bound [8]. Our commercial
database system LogicBlox employs a novel join algorithm,
leapfrog triejoin, which compared conspicuously well to the
NPRR algorithm in preliminary benchmarks. This spurred
us to analyze the complexity of leapfrog triejoin. In this pa-
per we establish that leapfrog triejoin is also worst-case op-
timal, up to a log factor, in the sense of NPRR. We improve
on the results of NPRR by proving that leapfrog triejoin
achieves worst-case optimality for finer-grained classes of
database instances, such as those defined by constraints on
projection cardinalities. We show that NPRR is not worst-
case optimal for such classes, giving a counterexample where
leapfrog triejoin runs in O(nlogn) time and NPRR runs in
O(n'%") time. On a practical note, leapfrog triejoin can
be implemented using conventional data structures such as
B-trees, and extends naturally to 31 queries. We believe our
algorithm offers a useful addition to the existing toolbox of
join algorithms, being easy to absorb, simple to implement,
and having a concise optimality proof.

General Terms
Algorithms, Theory

this Datalog rule:
Q(a, b, ¢) + R(a,b), S(b,c), T(a,c). 1)

where a, b, ¢ are query variables (for intuition: if R=S5 =T,
then @ finds triangles.)

Given constraints on the sizes of the input relations such
as |R| < n, |S| <n,|T| <n, what is the maximum possible
query result size |@Q|? This question has practical import,
since a tight bound |Q| < f(n) implies an Q(f(n)) worst-
case running time for algorithms answering such queries.

Atserias, Grohe and Marx (AGM [2]) established a tight
bound on the size of Q: the fractional edge cover bound Q*
(Section 2.2). For the case where |R| = |S| = |[T| = n, the
fractional cover bound yields |Q| < Q* = n*?. In earlier
work, Grohe and Marx (6] gave an algorithm with running
time O(|Q*[*g(n)), where g(n) is a polynomial determined
by the fractional cover bound. In 2012, Ngo, Porat, Ré and
Rudra (NPRR [8]) devised a groundbreaking algorithm with
worst-case running time O(Q"), matching the AGM bound.
The algorithm is non-trivial, and its implementation and
analysis depend on rather deep machinery developed in the
paper.

The NPRR algorithm was brought to our attention by
Dung Nguyen, who implemented it experimentally using our
framework. LogicBlox uses a novel and hitherto proprietary
join algorithm we call leapfrog triejoin. Preliminary bench-
marks suggested that leapfrog triejoin performed dramati-
cally better than NPRR on some test problems [9]. These
benchmark results motivated us to analyze our algorithm,



An example

seek(2) seek(8)
j,f”err__1“H“%ﬁL ’#H,a#’“""_-____-—“‘“‘“ﬁﬁﬁﬁh
A 0 1 3 4 3] 6 7
seek(3) seek(B)
seek(B)

C 2//—;—7—\\\8—}

ANBNC

seek(10)

Figure 1: Example of a leapfrog join of three relations A, B,C, with A = {0,1,3,4,5,6,7,8,9,11} and B, C as shown in
the second and third rows. Initially the iterators for A, B, C are positioned (respectively) at 0, 0, and 2. The iterator
for A performs a seek(2) which lands it at 3; the iterator for B then performs a seek(3) which lands at 6; the iterator

for C does seek(6) which lands at 8, etc.
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Expressing optimization problems

// entities

FOOD(f), FOOD_id(f:s) -> string(s).
NUTR(n), NUTR_id(n:s) -> string(s).

// predicates populated in the database

// constraints
NUTR(n), totalNutr[n] = v1, nutrLow[n] = v2 -> vl >= v2.

amt[n, f] = v -> NUTR(n), FOOD(f), float(v). // more predicate definitions

nutrLow[n] = v -> NUTR(n), float(v). totalNutr[n] = v -> NUTR(n), float(v).
cost[f] = v -> FOOD(f), float(v). totalNutr[n] = v <- agg << v = total(z) >>
// unknown predicate NUTR(n), FOOD(f),

Buy[f] = v -> FOOD(f), float(v). amt[n, f] = v1, Buy[f] = v2, z = vl*v2.

lang:solver:variable(  Buy).

// objective function and target (minimize)
objective[] = v -> float(v).

objective[] = v <- agg << v=total(z) >>
FOOD(f), cost[f] = v1, Buy[f] = v2, z = v1*v2.
lang:solver:minimal( objective).



Expressing ML problems as Convex Optimization

Data Science with Linear Programming

Nantia Makrynioti'- ? Nikolaos Vasiloglou' Emir Pasalic' Vasilis Vassalos?

'LogicBlox
{nantia.makrynioti, nikolaos.vasiloglou, emir.pasalic } @logicblox.com
2Department of Informatics, Athens University of Economics and Business
{vassalos} @aueb.gr

Abstract

The standard process of data science tasks is to pre-
pare features inside a database, export them as a
denormalized data frame and then apply machine
learning algorithms. This process is not optimal for
two reasons. First, it requires denormalization of
the database that can convert a small data problem
into a big data problem. The second problem is that
it assumes that the machine learning algorithm is
disentangled from the relational model of the prob-
lem. That seems to be a serious limitation since
the relational model contains very valuable domain
expertise. In this paper we explore the use of con-
vex optimization and specifically linear program-
ming as a data science tool that can express most
of the common machine learning algorithms and at
the same time it can be natively integrated inside
a declarative database. We are using SolverBlox.
a framework that accepts as an input Datalog code
and feeds it into a linear programming solver. We
demonstrate the expression of three common ma-
chine learning algorithms, Linear Regression, Fac-
torization Machines and Spectral Clusiering, and
present use case scenarios where data processing
and modelling of optimization problems can be
done step by step inside the database.

1 Introduction

As data science becomes more and more prevalent in the
industry, h ical modelling 1 such as R and
Matlab, remain popular. but users also seek other solutions,
which will provide a declarative framework for defining ma-
chine learning algorithms, as well as allow them to work on
data stored in relational databases. In the following sections,
we describe how the “sav what von want to do and not how to

et al., 2016], focus on supporting a number of linear alge-
bra operators, which are common in building machine learn-
ing models, and techniques for optimizing plans consisting of
these operators. However, in real world problems data is not
given as a matrix or tensor, but as relational tables. These sys-
tems ignore the relational nature of data and require conver-
sion to matrices. Apart the tedious process of exporting/im-
porting data between a database and a machine learning sys-
tem, denormalization also results in losing important domain
information embedded in the relational representation. More-
over, the computation of the optimal of the model
should still be described and implemented by the user, which
diverges from the concept of declarative programming. By
defining machine learning models inside a database with a
declarative language. such as LogiQL., casting them as linear
programs and then delegating their solution to an appropriate
solver, the user needs only to define the model and the objec-
tive function, as well as any constraints that may be useful to
the task. Moreover, the machine learning algorithm workflow
can include database queries. For example the user might
want to apply different regularization to data points that sat-
isfy a complicated data constraint, which is not possible o
compute once the data is flatiened.

‘We argue that linear programming is a convenient inter-
face of non-probabilistic machine learning to logical pro-
gramming. At a syntax level possible nonlinearities could
be expressed either with language directives or with logical
predicates, which a compiler will be able to rewrite to mathe-
matical expressions that can be passed to a lower level solver.
For example several nonlinearities can be automatically re-
laxed with rewritings and be processed by branch and bound
solvers or they can be converied to nonconvex equivalents. To
unify linear programming with logical programming, we use
the SolverBlox framework and demonstrate that we can ex-
press different classes of machine learning problems, which
can then be exported to the exact same format (.Ip Gurobi)
and be handled by external solvers. SolverBlox can also be
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Other approaches

RELOQP: A Python-Embedded Declarative Language for
Relational Optimization

Martin Mladenov Danny Heinrich* Leonard Kleinhans* Felix Gonsior Kristian Kersting

Computer Science Department, TU Dortmund University
{fn.In} @cs.tu-dortmund

Abstract

We present RELOOP, a domain-specific language for
relational optimization embedded in Python. It allows
the user to express relational optimization problems in
a natural syntax that follows logic and linear algebra,
rather than in the restrictive standard form required by
solvers, and can automatically compile the model to a
lower-order but equivalent model. Moreover, RELOOP
makes it easy to combine relational optimization with
high-level features of Python such as loops, parallelism
and interfaces to relational databases. RELOOP is
available at http://www-ai.cs.uni-dortmund.de/weblab/
static/RLP/html/ along with documentation and exam-
ples.

Introduction
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MiningZinc: A Modeling Language for Constraint-based Mining

Tias Guns', Anton Dries!, Guido Tack?, Siegfried Nijssen* and Luc De Raedt*
! Department of Computer Science, KU Leuven  {firstname.lastname} @cs kuleuven.be
2 Caulfield School of Information Technology, Monash University  guido.tack@monash.ed
3 LIACS, Universiteit Leiden snijssen@liacs.nl

Abstract

‘We introduce MiningZinc, a general framework for
constraint-based pattern mining. one of the most
popular tasks in data mining. MiningZinc consists
of two key components: a language component and
a toolchain component.

The language allows for high-level and natu-
ral modeling of mining problems, such that
MiningZinc models closely resemble definitions
found in the data mining literature. It is inspired
by the Zinc family of languages and systems and
supports user-defined constraints and optimization
criteria.

The toolchain allows for finding solutions to the
models. It ensures the solver independence of
the language and supports both standard constraint
solvers and specialized data mining systems. Au-
tomatic model transformations enable the efficient
use of different solvers and systems.

The combination of both components allows one
to rapidly model constraint-based mining problems
and execute these with a wide variety of methods.
‘We demonstrate this experimentally for a number
of well-known solvers and data mining tasks.

Introduction

The data mining practice contrasts sharply with
constraint programming, where high-level language:
Zinc [Marriott et al., 20081, Essence [Frisch er al., 2!
OPL [Van Hentenryck, 1999] are used to model p
and general purpose solvers are provided to comp
tions. Motivated by the success of this declarative :
in constraint programming, we propose a modeling
approach for data mining. This makes data mining m
ible, as it becomes easy to change the model and to s
best solvers to get solutions.

As the field of data mining is diverse, we focus in t!
on one of the most popular tasks, namely constrai
pattern mining. Ewen for the restricted data type ¢
databases, many settings (supervised and unsupervi
corresponding systems have been proposed in the li
this makes it an adequate showcase for a declarative ¢
to data mining. Dealing with a diverse set of constrai

pattern mining problems remains an unsolved and itmporant

challenge in data mining.

Foundations of Declarative Data Analysis
Using Limit Datalog Programs
(Extended Abstract)

Mark Kaminski, Bernardo Cuenca Grau, Egor V. Kostylev, Boris Motik, and
Ian Horrocks

Department of Computer Science, University of Oxford, UK

Analysing complex datasets is currently a hot topic in information systems. The
term ‘data analysis’ covers a broad range of techniques that often involve tasks such
as data aggregation, property verification, or query answering. Such tasks are currently
often solved imperatively (e.g., using Java or Scala) by specifying how to manipulate
the data, and this is undesirable because the objective of the analysis is often obscured
by evaluation concerns. It has recently been argued that data analysis should be declar-
ative [1,12,16, 17]: users should describe what the desired output is, rather than how
to compute it. For example, instead of computing shortest paths in a graph by a con-
crete algorithm, one should (i) describe what a path length is, and (ii) select only paths
of minimum length. Such a specification is independent of evaluation details, allowing
analysts to focus on the task at hand. An evaluation strategy can be chosen later, and
general parallel and/or incremental evaluation algorithms can be reused “for free’.

An essential ingredient of declarative data analysis is an efficient language that can
capture the relevant tasks, and Datalog is a prime candidate since it supports recursion.
Apart from recursion, however, data analysis usually also requires integer arithmetic
to capture quantitative aspects of data (e.g., the length of a shortest path). Research on
combining the two dates back to the '90s [14, 10,2, 18,4, 8, 15], and is currently ex-
periencing a revival [7, 13]. This extensive body of work, however, focuses primarily
on integrating recursion and arithmetic with aggregate functions in a coherent seman-
tic framework, where technical difficulties arise due to nonmonotonicity of aggregates.

The key contribution of this paper is the introduction of a
general-purpose, declarative mining framework called Min-

ingZinc. The design criteria for MiningZinc are:

e to support the high-level and natural modeling of pattern
mining tasks; that is, MiningZinc models should closely
correspond to the definitions of data mining problems

found in the literature;

e to support user-defined constraints and criteria such
that existing problem formulations can be extended and

29



How efficient is this?

Managed to express data relations and ML operations in the same language
Translated the problem to its algebraic representation (Grounding)

But we still denormalized in the end the database

Can we do anything about that?
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Lifting

Algorithm 2: Color-Passing
Input: A graph G = (V, E), an initial coloring function Ag: VN E — N
Output: A partition i = {Uy, .., Uy} of V

1 Initialize i + 0, Uy = {V}

2 repeat

3 foreach v € V do

4 e Ai(v)

5 foreach u € Nb, do

s | e e {eu (itm, agtfivh))
7 end

8 Ajs1(u) < hash(c)

9 end

W | Uit = {dv € Vi =13}

1 ie—i+l

12 until 4y = ;.
13 return U4

5 Exploiting Symmetries for Reducing the Dimension of LPs

As we have already mentioned in the introduction, one of the features of many relational models is that they
can produce model instances with a lot of symmetries. These symmetries in turn can be exploited to perform
inference at a “lifted” level, i.e.. at the level of groups of variables. For probabilistic relational models,
this lifted inference can yield dramatic speed-ups, since one reasons about the groups of indistinguishable
variables as a whole, instead of treating them individually.

Triggered by this success, we will now show that linear programming is liftable, too.

5.1 Detection Symmetries using Color-Passing

One way to devise a lifted inference approach is the following. One starts with a standard inference algorithm
and introduces some notion of indistinguishability among the variables in the model (instance) at hand. For
example. we can say that two variables X and Y in a linear program are indistinguishable. if there exist a
permutation of all variables, which exchanges X and Y, yet still yields back the same model in terms of the
solutions. Then, given a particular model instance. one detects. which variables are exchangeable in that
model instance. The standard inference algorithm is modified in such a way that it can deal with groups of
indistinguishable variables as a whole. instead of treating them individually. This approach was for instance
followed to devise a lifted version of belief propagation [SDO8, KAN09, AKMNI3]. a message-passing
algorithm for approximate inference in Markov random fields (MRFs), which we will not briefly sketch in
order to prepare the stage for lifted linear programming. In doing so, we will omit many details, since they
are not important for developing lifted linear programming.

Belief propagation approximately computes the single-variable marginal probabilities P(X;) in an MRF
encoding the joint distribution over the random variables X, X5, ..., X,. It does so by passing messages
within a graphical represention of the MRE

‘The main idea to lift belief propagation is to simulate it keeping track of which X;s and clauses send
identical messages. These elements of the model can then be merged into groups, whose members are
indistinguishable in terms of belief propagation. After grouping elements together into a potentially smaller
(lifted) MRF, a modified message-passing computes the same beliefs as standard belief propagation on the
original MRE.

Relational Linear Programs, Kersting et.al

Ty = G

T

‘T :
E E y
A b I

Figure 7: Construction of the coefficient graph Gy of LY. On the left-hand side, the coloring of the LP is
shown. This turns into the colored coefficient graph shown on the right-hand side.

with knowledge base LogKB (recall that logical atoms are assumed to evaluate to 0 and 1 within an RLP):

widget (x) .
widget (y) .

gadget (z) .

If we ground this linear program and convert it to dual form (as in Eq. 1), we obtain the following linear
program £2 = (A, b, )

minimize Ox+0y + 1z
SR

subj <
subject to o < ol |22

where for brevity we have substituted p(x). (). p(2) by x, ¥,z respectively. The coefficient graph of L0 is
shown in Fig. 7.

We call an equitable partition of a linear program L the equitable partition of the graph Gr.*. Suppose
noW we compute an equitable partition I = {Py., e 0y} of G using Algorithm 2 and compute
the corresponding fractinal automorphism (Xp,X) as in Eq. 3. Observer that (Xp,Xg) will have the
following properties:

i) due 1o Theorem 3. we have XpA = AXp:

ii) by our choice of initial colors of Gy the partition 2/ will never group together variable vertices i j
with ¢; # ¢, nor will it group constraint vertices /,j with b; # by. By Eq. 3, this implies

Xgb=h.

This yields the definition of a fractional automorphism of linear programs — we call a pair of doubly
stochastic matrices (Xp., Xg) a fractional automorphism of the linear program L if it satisfies properties
i) and i) as above.

Susing the notion of equitable partitions of bipartite eolored graphs from the previous section.
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Does not solve the problem completely

It requires temporary denormalization but the final matrix is small

There are tricks that can save temporary memory
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Observation

We need to build a framework for mathematical operations in the relational domain
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Building solvers |
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We define and study the Functional Aggregate Query (FAQ) problen
frequently asked questions in constraint satisfaction, databases, matrix opera
models and logic. This is our main conceptual contribution.

We then present a simple algorithm called InsideOut to solve this gel
a variation of the traditional dynamic programming approach for constr:
variable elimination. Our variation adds a couple of simple twists to basic -
to deal with the generality of FAQ, to take full advantage of Grohe and 1
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As is the case with constraint programming and graphical model infer:
efficiently we need to solve an optimization problem to compute an approp
main technical contribution of this work is a precise characterization of
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Our results imply a host of known and a few new results in graphical model
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input functions.

n the database

FAQ: Questions Asked Frequently
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ABSTRACT

In-database analytics is of great practical importance as it
avoids the costly repeated loop data scientists have to deal
with on a daily basi elect features, export the data, con-
vert data format, train models using an external tool, reim-
port the parameters. It is also a fertile ground of theoreti-
cally fundamental and challenging problems at the intersec-
tion of relational and statistical data models.

This paper introduces a unified framework for training and
evaluating a class of statistical learning models inside a rela-
tional database. This class includes ridge linear regression,
polynomial regression, factorization machines, and principal
component analysis. We show that, by synergizing key tools
from relational database theory such as schema information,
structure, recent advances in query evaluation algo-
and from linear algebra such as various tensor and
matrix operations, one can formulate in-database learning
problems and design efficient algorithms to solve them.

The algorithms and models proposed in the paper have
already been implemented inside the LogicBlox database en-
gine and used in retail-planning and forecasting applications,
with significant performance benefits over out-of-database
solutions that require the costly data-export loop.
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The Symbolic Interior Point Method
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Abstract

A recent trend in probabilistic i on of models in a formal
syntax, with suitable high-level features such as individuals, relations, and connectives,
enabling descriptive clarity, succinctness and circumventing the need for the modeler to
engineer a custom solver. Unfortunately, bringing these linguistic and pragmatic benefits
to numerical cpumlzanon has proven surpnxmg]y challenging. In this paper, we turn to
these chall we a rich modeli for which an interior-point method
computes approximate solutions in a generic w.iy While logical features easily complicates
the underlying model, often yielding intricate dependencies, we exploit and cache local
structure using algebraic decision diagrams (ADDs). Indeed, standard matrix-vector algebra
is efficiently realizable in ADDs, but we argue and show that well-known second-order
methods are not ideal for ADDs. Our engine, therefore, invokes a sophisticated matrix-free
approach. We demonstrate the flexibility of the resulting symbolic-numeric optimizer on
decision making and compressed sensing tasks with millions of non-zero entries.

1 Introduction

34



USE CASE: LINEAR ALGEBRA

LogiQL - linear algebra via relational programming

vecA[x] = vecB[x] + vecC[x] + cl]. // pointwise addition
vecA[x] = vecB[x] * wvecCI[x]. // pointwise multiplication
scalar[] += vecB[x] * vecCI[x]. // dot product

matA[x, y] = vecB[x] * vecCly]. // vector multiplication
matA[x, y] = matB[x, y] + matC[x, vI. // matrix addition

matA[x, y] += matB[x, t] * matCl[t, vyI. // matrix multiplicasi;%g%
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USE CASE: LINEAR ALGEBRA

LogiQL - basic teed-torward neural networ

out [Node] = sigmoid[in [Node]].
sigmoid[X] = 1/ (1l+exp[-X]).

in [Node] += weight [Node,Child] *out [Child] .
in [Node] += input [Node] .

error += (out [Node] -target [Node]) **2.

August 15, 2017 36



FAQ

Problem FAQ formulation Previous Algo. Our Algo.
#QCQ 2 eftﬁll] @5 [T wsxs) Open |.A2|0W . yfagw(e)
(2130000 X5) Seé&
where @7 € {max, x}
QCQ @%1’]1) : @iﬁ) H Ws(xs) | 72100 . NPW(#) [21] | |70 Nfaaw(g)
Se&
where @7 € {max, x}
#CQ = Y max-max[[ysixs) | |#]°00-NOMU) (31] | |7000 . Nfaaw(y)
(X1 ef) K4 *n Sc&
Marginal Distribution Z l—[ Ws(xs) o(#)) - Nhtw(g) (49) |.72|00). Nfaawig)
(Xf41)m0%n) SEE
MAP query max H Ws(Xs) (j(L;fD . Nhtw(go) [49] |‘;€|O(l) . Nfaqw((p)
(xf+1!---:xn) Se&
n-1
Matrix Chain Mult. Y I wiier (e, %i41) DP bound [25] DP bound

X2yXp-1 =1

DFT ¥ by- ] e
Y0y Ym-1)EZ}] 0<j+k<m

= Fid
izn L
P

O(nlogp n) (24| O(nlogp n)

Table 1: Runtimes of algorithms assuming optimal variable ordering is given. Problems shaded red are
in CSPs and logic (D = {0,1}), problems shaded green fall under PGMs (D = R;), and problems shaded
blue fall under matrix operations (D = C). N denotes the size of the largest factor (assuming they are
represented with the listing format). htw(¢) is the notion of integral cover width defined in [49] for PGM.



Toy Query 1

R

f(x) <- int:range(1,100,1,x). // n = 100

[] = n <- agg << n=count() >>
_f(x), _fly), _f(z), _f(w).
L

100 0.0665121 16.6821

1000 0.0605559 Killed after 1 hour

10000 0.092855
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InsideOut Rewrite

CNT_a[] = a «<-
CNT _b[] b <-
CNT c[] Cc <-
CNT d[] = d «<-
S[]=n <-
_CNT_a[] = a,
_CNT_b[] = b,
_CNT_c[] = c,
_CNT_d[] = d,
int:multiply[c, d]

int:
int

int:

multiply[b, cd]

:multiply[a, bcd]

eq_2(n, abcd).

agg<<a
agg<<b =
agg<<c
agg<<d

cd,
bcd,
abcd,

= count()>> f(z).
count()>> f(y).
= count()>> f(x).
count()>> f(w).
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What Did InsideOut Exploit?

Independence!

R[] = n <- agg << n=count() >>
_f(x), _f(y), _f(z), _f(w).

Gather & multiply results

_f(x) _f(y) _f(z2) _f(t)




Toy Query 2

_f(x) <- int:range(1,100,1,x). // n = 100
R[] = n <- agg << n=count() >

_f(x), _f(y), _f(z), _f(w),
X <y < zZ< W,

_ With InsideOut Without InsideOut
100 0.137632 1.19114
1000 0.450424 ?

10000 25.6839 ?
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InsideOut Rewrite

_count_x[y] = num_x <-
agg<<numx = count()>>
_f(x),
_fy),
X < Y.

_count_ w[z] = num_w <-
agg<<num_w = count()>>
_f(z),
_f(w),
Z < w.

T[] = n <- agg<<n = total(xw)>>

y < z,
_count_x[y]
_count_w[z]

num_x,
num_w,

int:multiply[num_x, num_w] = Xw.
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What did it take advantage of?

R[] = n <- agg << n=count() >>

_f(x), _f(y), _f(z), _f(w),
X <Yy < zZ< W.

_fly), _f(z), y < z, E num X - num_w
_count_x[y] = num_x, TR f(2)
count w[z] = num w, y<z

_f(x), _f(y), _f(z), _f(w),

X <y Z < W
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Tree Decomposition

* Rudolf Halin (1976)
* Neil Robertson and Paul Seymour (1984) — rediscovered

. Wldely used in
Query optimization (?!)
CSP
Machine learning
» Algorithm design (even for NP-hard problems)
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What is a Tree Decomposition (TD)?

R[] = n <- agg<<n = count()>>
Ri(a,b,d), c<d, R2(c,b,d),
R3(b,e), R4(c,e), b+e=f, R5[b,e] = g, g/f = h,
R7(i,j,h), R8(e,g), e*g=b, e-b=h.
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Example 1.
R[] = n <- agg<<n = count()>> F(x), F(y), F(z), F(w).



Example 2:
R[] =

n <- agg << n=count() >>

F(x), F(y), F(z), F(w),
X <Yy < zZ< W,



Example 3: a big tree-like query

R[] = ¢ <- agg<<c = count()>> E(a,b), E(a,c), E(b,d),
E(b,e), E(c,f), E(c,g), E(d,h), E(d,i), E(e,]), E(e,k),
E(f,1), E(f, m), E(g,n), E(g,0), Vi(h), V2(i), V3(]),
V4a(k), V5(1), ve(m), V7(n), V8(o).

ab




Example 4. dumbbell

R[] = t <-
agg<<t = count()>>
E(a)b)J E(aJC>J E(bJC))
E(c,d),
E(d)e)J E(de)J E(le)'

abc Ced def




Example 6: Hidden Markov Model

s &



Example 4: dumbbell, O(N*?) vs. O(N°?)
N L

facebook 4.37485 1608.97
loc-brightkite 1.03651 174.984
email-Enron 3.57298 562.598

wiki-vote 1.65755 1047.16
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Example 5: 4-path query, O(N) vs O(N?®)

With InsideOut__| Without ____| Speedup ratio

email-Enron
facebook
loc-brightkite

wiki-vote

0.293187
0.226596
0.385222
0.165675

8393.72
3468.08
1432.24
20736.6

28,629
15,305
3,717
125,164
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Belief Propagation (will reachlﬁ fixed point!)

Asynchronous
message passing

_U[b,c,e] =
_V[a,b,c,d] =
_R[b,e,f,g,h] =
_S[h,1,3] =
_T[e,g,h,k] =

u
\Y
r
S

t

// (also called clique tree, junction tree)
// after MPs, factors in calibrated state!
// Under Boolean Semiring, it means

// _U = projection of output onto {b,c,e}
// V, R, S, T = proj of output ...

In PGM, we can query for a gazillion things here, e.g.
+ What’s the marginal probability on two variables {b,e}?
+ What’s the {b,e} that has the maximum marginal probability?
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HMM: Forward-backward & Viterbi

Asynchronous
message passing



Typical Example: Q10

_lostRevenue[customer] = r <-
agg<< r = total(revenue) >>
revenue = decimal:multiply[L EXTENDEDPRICE[order, 1i],
decimal:subtract[_one[], L _DISCOUNT[order, 1li]]],
O_ORDERDATE[order]=orderdate,
_date[] <= orderdate < _endDate[],
L_RETURNFLAG[order, 1i] = RF_NAME_INV["R"],
customer = O _CUSTKEY[order].
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Typical Example: Q10

_CONJ_1ZVGA58Q[order]=customer <-
O_ORDERDATE[order]=orderdate,
datetime:le_2(t_Zdd2gz4 QGJ,t_Zdd2gz4 QEl),

_date[]=t_Zdd2gz4 QG3J,
datetime:eq_2(orderdate,t_Zdd2gZ4 QEl),
datetime:1t_2(t_zdd2gz4 QEl,t zdd2gz4 QGK),

_endDate[ ]=t_Zdd2gZ4 QGK,
O_CUSTKEY[order]=customer.

_PRJ_1ZVGCXHS(order) <- _CONJ_1ZVGA58Q[order]=customer.

_TOT_1ZVGGU60O[order]=Var_1ZVGEZOY <- agg<<Var_1ZVGEZOY = total(revenue)>>
decimal:multiply[t Zdd2gZ4 QGF,t Zdd2gZ4 QGI]=revenue,
L_EXTENDEDPRICE[order,1i]=t_zdd2gZ4_ QGF,
decimal:subtract[t _Zdd2gZ4 QGG,t Zdd2gZ4 QGH]=t Zdd2gZ4 QGI,

_one[]=t_Zdd2gZ4 QGG,
L_DISCOUNT[order,li]=t_Zdd2gZ4 QGH,
L_RETURNFLAG[order,1i]=t_zdd2gzZ4 QGL,
RF_NAME_INV[t_Zdd2gZ4 QGa]=t_zZdd2gzZ4 QGL,
string:eq 2(t_Zdd2gZ4 QGa,"R"),
_PRJ_1ZVGCXHS (order).
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In DB model training

materialized
output

feature |
query
| i

h'd —

h
% ’ model %
reformulation model

g

h'd =
Gradient-descent
# Trainer |
Y
R

Figure 2: In-database vs. Out-of-database learning: High-level diagram. (See Section D.1.)



More d

etailed

R

FAQ) gueries:

¢ h madel .

reformulation

T

FAQ subqueries for query '*7):

< Nt & |D)|

Figure 3: In-database vs. Out-of-database learning: Low-level diagram. (See Section D.2.)
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Even more d

etails

i
S R =
FAQ queries: %@\:
=it
qu a*
FD-filter
matrix
multiplier/inverter
)

g(v)
NESAP FD
S| VIt |t matrices
[o]¢ .
ql(@)
e
3| w.I0)

Figure 4: FD-aware in-database learning (vs. in-database learning without D). (See Section D.3).
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LINEAR REGRESSION

l I vi | v | vs | va
Linear regression LR

Features without FDs 33+ 55 33455 33+1340 3343702

(cont.4-categ.) with FDs 33 + 55 33455 3341340 3343653

Aggregates without FDs 595+2,418 095+4-2,421 595+111,549 2954+157,735

(cont.4categ.) with FDs 59542418 5954-2,421 5954+111,549 5954144, 589

M (ols) Learn 1,898.35 8,855.11 > 79, 200.00 -

R (qr) Join (PSQL) 50.63 = = =

Export /Import 308.83 - - -

Learn 490.13 - - -

DC Aggregate 93.31 424.81 OOM OOM
Converge (runs) 0.01 (359) 0.01 (359)

AC Aggregate 25.51 116.64 117.94 895.22

Converge (runs) 0.02 (343) 0.02 (367) 0.42 (337) 0.66 (365)

AC+FD Aggregate same as AC 380.31

Converge (runs) there are no FDs 8.82 (366)

Speedup AC+FD/M T74.36 % 75.91x > 669.14 % oo

AC+FD/R 33.28 x 0o (o9 oo

AC+FD/DC 3.65x 3.64x% 00 )

AC+FD/AC same as AC, there are no FDs 2.30x
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POLYNOMIAL REGRESSION

Polynomial regression of degree 2 PR*

Features without FDs 562+2,363 | 062+2,366 | 562+110,209 562+154,033
(cont.+categ.) with FDs same as above, there are no FDs 5624-140,936
Aggregates without FDs 158k+742k | 158k+746k | 158k+65,875k | 158k+46,113k
(cont.+categ.) with FDs same as above, there are no FDs 158k+36,712k
M (ols) Learn > 79,200.00 | > 79,200.00 | > 79,200.00 =
AC Aggregate 132.43 217.40 820.57 7,012.84

Converge (runs) 3.27 (321) | 3.62 (365) | 349.15 (400) | 115.65 (200)
AC+FD Aggregate same as AC 1819.80

Converge (runs) there are no FDs 219.51 (180)
Speedup AC+FD/M > 583.64x | > 152.01x | > 67.71x 00

AC+FD/AC same as AC, there are no FDs 3.50x
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FACTORIZATION MACHINES

Factorization machine of degree 2 and rank 8 FaMaj

Features without FDs 530+2,363 | 530+2,366 | 530+110,209 | 530+154,033
(cont.+categ.) with FDs same as above, there are no FDs 5624-140,936
Aggregates without FDs 140k+740k | 140k+744k | 140k+65,832k | 140k+45,995k
(cont.+categ.) with FDs same as above, there are no FDs 140k+36,595k
libFM Join (PSQL) 50.63 216.56 216.56 216.56
(MCMC) Export /Import 412.84 1462.54 3,006.90 3,368.06
Learn (300 runs) 19,692.90 103,225.50 79,839.13 87,873.75
AC Aggregate 128.97 498.79 772.42 6869.47
Converge (runs) 3.03 (300) 3.05 (300) 262.54 (300) 166.60 (300)
AC+4+FD Aggregate same as AC 1672.83
Converge (runs) there are no FDs 144.07 (300)
Speedup AC+FD/libFM 152.70x | 209.03x | 80.34x 50.33 x
AC+FD/AC same as AC, there are no FDs 3.87x
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Conclusions

» Efficient datascience requires convergence to one universal
language

ML, DB, etc have to co-exist

* Datalogis a good candidate but not the only one

e Algorithms should move beyond the input matrix paradigm

* Input = Data + Programs (joins)



