
Learning to Learn Programs from Examples: Going Beyond Program Structure1

Kevin Ellis∗
MIT

ellisk@mit.edu

Sumit Gulwani
Microsoft

sumitg@microsoft.com

1 Introduction
Billions of people own computers, yet vanishingly few know
how to program. Imagine an end user wishing to extract the
years from a table of data, like in Table 1. What would be
a trivial regular expression for a coder is impossible for the
vast majority of computer users. But in many cases, it is easy
to show a computer what to do by giving examples – an ob-
servation that has motivated a long line of work on the prob-
lem of programming by examples (PBE), a paradigm where
end users give examples of intended behavior and the sys-
tem responds by inducing and running a program [Lieberman,
2001].

A core problem in PBE is determining which single pro-
gram the user intended within the vast space of all programs
consistent with the examples. Users would like to provide
only one or a few examples, leaving the intended behavior
highly ambiguous. Consider a user who provides just the first
input/output example in Table 1. Did they mean to extract the
first number of the input? The last number? The first number
after a comma? Or did they intend to just produce “1993”
for each input? In real-world scenarios we could encounter
on the order of 10100 distinct programs consistent with the
examples [Singh and Gulwani, ]. Getting the right program
from fewer examples means less effort for users and more
adoption of PBE technology. This concern is practical: Mi-
crosoft refused to ship the recent PBE system Flash Fill [Gul-
wani, 2011] until common scenarios were learned from only
one example.

We develop a new inductive bias for resolving the ambi-
guity that is inherent when learning programs from few ex-
amples. Prior inductive biases in PBE use features of the
program’s syntactic structure, picking either the smallest pro-
gram consistent with the examples, or the one that looks
the most natural according to some learned criterion [Liang
et al., 2010; Menon et al., 2013; Singh and Gulwani, ;
Lin et al., 2014]. In contrast, we look at the outputs and ex-
ecution traces of a program, which we will show can some-
times predict program correctness even better than if we could
examine the program itself. Intuitively, we ask, “what do typ-
ically intended programs compute?” rather than “what do

∗Work done during two internships at Microsoft with the PROSE
team

1Extended abstract for: [Ellis and Gulwani, 2017]

Input table Desired output table
Missing page numbers, 1993 1993
64-67, 1995 1995
1992 (1-27) 1992
· · · · · ·

Table 1: An everyday computer task trivial for programmers
but inaccessible for nonprogrammers: given the input table of
strings, automatically extract the year to produce the desired
output table on the right.

typically intended programs look like?” Returning to Ta-
ble 1, we prefer the program extracting years because its
outputs look like an intended behavior, even though extract-
ing the first number is a shorter program. We apply our
technique to a string transformation domain, which includes
Flash Fill-style problems (eg Table 1); and a text extrac-
tion domain; see [Le and Gulwani, 2014]. We implement
our algorithms within the PROSE [Polozov and Gulwani,
2015] library (https://microsoft.github.io/prose/). We take as
a goal to improve PROSE’s inductive bias, and use the phrase
“PROSE” to refer to the current PROSE implementations of
these domains, in contrast to our augmented system.

Predicting program correctness based on its syntactic struc-
ture is perhaps the oldest and most successful idea in pro-
gram induction [Solomonoff, 1964]. But the correctness of a
program goes beyond its appearance. We develop two new
classes of features that are invariant to program structure,
called output features and execution trace features.

2 Output features
Some sets of outputs are a priori more likely to be produced
from valid programs. In PBE scenarios the user typically la-
bels few inputs by providing outputs but has many unlabeled
inputs; the candidate outputs on the unlabeled inputs give
a semisupervised learning signal that leverages the typically
larger set of unlabeled data. See Table 2 and 3. In Table 2,
the system considers programs that either append a bracket (a
simple program) or ensure correct bracketing (a complex pro-
gram). PROSE opts for the simple program, but our system
notices that program predicts an output too dissimilar from
the labeled example. Instead we prefer the program without
this “outlier” in its outputs. More generally users expect



Input Output (PROSE) Output (ours)
[CPT-00350 [CPT-00350] [CPT-00350]
[CPT-00340 [CPT-00340] [CPT-00340]
[CPT-115] [CPT-115]] [CPT-115]

Table 2: Learning a program from one example (top row) and
applying it to other inputs (bottom rows, outputs italicized).
Our semisupervised approach let us get the last row correct.

Input Output Output
(PROSE) (ours)

Brenda Everroad Brenda Brenda
Dr. Catherine Ramsey Catherine Catherine
Judith K. Smith Judith K. Judith
Cheryl J. Adams and Cheryl J. Adams Cheryl

Binnie Phillips and Binnie

Table 3: Learning a program from one example (top row)
and applying it to other inputs (bottom rows, outputs itali-
cized). Our semisupervised approach uses simple common
sense reasoning, knowing about names, places, words, dates,
etc, letting us get the last two rows correct.

programs to produce similarly formatted outputs, such as all
being dates, natural numbers, or addresses. This is similar to
the idea that programs should be well-typed, and so should
predictably output data of a certain type. This is also an anal-
ogy to regularizers that prefer smooth functions: here, we
might prefer “smooth” programs whose outputs are not too
dissimilar.

Concretely, our system learns an inductive bias over pro-
gram outputs in the form of a probabilistic model that assigns
higher likelihood to programs whose outputs on unlabeled
examples have similar statistics to the user labeled outputs.
Here, “output statistics” is formalized by fitting a generative
model to the program outputs – allowing us to insert sim-
ple kinds of common sense knowledge into the inductive bias
(see Table 3).

3 Execution trace features
Going beyond the final outputs of a candidate program, we
show how to consider the entire execution trace. Our model
learns a bias over sequences of computations, which allows
us to disprefer seemingly natural programs with pathological
behavior on the provided inputs. Imagine a spreadsheet of
professor names: Rebecca, Oliver, etc. One thing you might
want a PBE system to do is put the title “Dr.” in front of
each of these names. So, you give the system an example of
“Dr.” being prepended to the string “Rebecca.” This should
be a trivial learning problem, and the system should induce
a program that just puts the constant “Dr.” in front of the in-
put. However, PROSE failed on this simple case; see Table 4.
Although the system can represent the intended program, it
instead prefers a program that extracts the first character from
“Rebecca” to produce the r in “Dr.”, with unintended conse-
quences for “Oliver.”

Why does PROSE prefer a program that extracts the first
character? In general, programs with more constants are less

Input Output
Rebecca Dr. Rebecca
Oliver Do. Oliver

Table 4: A string transfor-
mation problem; the user
provided the first output
and an incorrect program
produced the italicized sec-
ond output.

Rebecca −→ Dr. Rebecca

Figure 1: Execution trace
for erroneous program with
the behavior shown in Ta-
ble 4. Notice the overlap-
ping substring extractions.

plausible; this is related to the intuition that we should pre-
fer programs with shorter description lengths. Furthermore,
the first character of the input is very commonly extracted,
so PROSE was tuned to prefer programs that extract prefixes.
These two inductive biases conspired to steer the system to-
ward the wrong program.

By looking at the execution trace of the program we dis-
covered a new kind of signal for program correctness. Re-
turning to our motivating example, the erroneous program
first extracts a region of the input and then extracts an over-
lapping region (see Figure 1). Accessing overlapping regions
of data is seldom intended: usually programs pull out the data
they want and then do something with it, rather than extract-
ing some parts of the data multiple times. More generally
one can learn an inductive bias for execution traces by fitting
a probabilistic model to traces from intended programs. For
our domain we learned a probabilistic model over sequences
of substring extractions.

4 Experimental results
We trained a log linear model to predict the intended program
using either program, output, or trace features, or their com-
bination. See Figure 2.

Model Training Test
Random baseline 13.7% 13.7%

PROSE 76.4% −
Trace (ours) 56.6% 46.1± 2%

Output (ours) 68.2% 66.5± 2 %
Program (ours) 77.9% 57.9± 4 %

All (ours) 88.4% 83.5 ± 3%

Figure 2: Accuracy (% test cases where all predicted outputs
are correct) of different models. Test accuracies determined
by 10-fold cross validation. 477 string transformation test
cases.

Program outputs provide a surprisingly strong signal. Out-
put features are lower dimensional than program features; ac-
cordingly, predicting based on outputs is less prone to over
fitting. Our learned model beats PROSE, even though PROSE
was hand tuned to these particular data sets. Yet our learned
model has higher accuracy even on test cases it did not see
than the old system does on the test cases that it did see (all



of them). However, note that success of our system relies on
our new classes of features, as our learned model for program
structure approximately matches PROSE’s accuracy.

5 What does this mean for program
induction?

Most program induction algorithms predict the program that
jointly minimizes some measure of program cost, plus a
term measuring agreement with input/output examples. This
scheme is a close analogy to how regression is framed in ma-
chine learning.

But programs, whether they be deterministic or probabilis-
tic, procedural or declarative (e.g., in inductive logic pro-
gramming or grammar induction), expose structure beyond
their syntax tree. The execution trace and predictions on unla-
beled inputs offer alternative signals for program correctness.
Exploiting these signals in other domains is a target for future
research.

Acknowledgments
We gratefully acknowledge collaboration with all of the
PROSE team at Microsoft, but especially, in no particular or-
der, Vu Le, Daniel Perelman, Alex Polozov, Danny Simmons,
Abhishek Udupa, and Adam Smith. We are grateful for feed-
back from Armando Solar-Lezama and our anonymous re-
viewers.

References
[Ellis and Gulwani, 2017] Kevin Ellis and Sumit Gulwani.

Learning to learn programs from examples: Going beyond
program structure. IJCAI, 2017.

[Gulwani, 2011] Sumit Gulwani. Automating string process-
ing in spreadsheets using input-output examples. In ACM
SIGPLAN Notices, volume 46, pages 317–330. ACM,
2011.

[Le and Gulwani, 2014] Vu Le and Sumit Gulwani. Flashex-
tract: a framework for data extraction by examples. In
ACM SIGPLAN Notices, volume 49, pages 542–553.
ACM, 2014.

[Liang et al., 2010] Percy Liang, Michael I. Jordan, and Dan
Klein. Learning programs: A hierarchical bayesian ap-
proach. In Johannes Fürnkranz and Thorsten Joachims,
editors, ICML, pages 639–646. Omnipress, 2010.

[Lieberman, 2001] Henry Lieberman. Your Wish is My Com-
mand: Programming by Example. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

[Lin et al., 2014] Dianhuan Lin, Eyal Dechter, Kevin Ellis,
Joshua B. Tenenbaum, and Stephen Muggleton. Bias re-
formulation for one-shot function induction. In ECAI
2014, pages 525–530, 2014.

[Menon et al., 2013] Aditya Menon, Omer Tamuz, Sumit
Gulwani, Butler Lampson, and Adam Kalai. A machine
learning framework for programming by example. In
ICML, pages 187–195, 2013.

[Polozov and Gulwani, 2015] Oleksandr Polozov and Sumit
Gulwani. Flashmeta: A framework for inductive program
synthesis. ACM SIGPLAN Notices, 50(10):107–126, 2015.

[Singh and Gulwani, ] Rishabh Singh and Sumit Gulwani.
Predicting a correct program in programming by example.
In CAV.

[Solomonoff, 1964] Ray J Solomonoff. A formal theory of
inductive inference. Information and control, 7(1):1–22,
1964.


